#include <stdio.h>
long long a[45] = {0, 2}, b[45] = {0, 1}, t[45] = {0, 3};
void fun()
{
for(int i = 2; i <= 40; i++)
{
a[i] = (a[i - 1] + b[i - 1])*2;
b[i] = a[i - 1];
t[i] = a[i] + b[i];
}
}
int main()
{
fun();
int N;
while(scanf("%d", &N) != EOF)
printf("%lld\n", t[N]);
return 0;
}
解题思路
a[i]代表最后一位不是O,b[i]代表最后一位是O
t[i] = a[i] + b[i]
n = 1
| E | O | F |
a[1] = 2, b[1] = 1
n = 2
| EE | EF | EO |
| FE | FF | FO |
| OE | OF |
a[2] = 6, b[2] = 2
{a[i]=(a[i−1]+b[i−1])∗2b[i]=a[i−1]t[i]=a[i]+b[i]
\begin {cases}
a[i] = (a[i-1]+b[i-1])*2\\
b[i] = a[i - 1]\\
t[i] = a[i] + b[i]
\end {cases}
⎩⎪⎨⎪⎧a[i]=(a[i−1]+b[i−1])∗2b[i]=a[i−1]t[i]=a[i]+b[i]
解方程
{t[i]=a[i−1]∗3+b[i−1]∗2t[i]=(a[i−1]+b[i−1])∗3−b[i−1]t[i]=t[i−1]∗3−b[i−1]
\begin {cases}
t[i] = a[i - 1]*3 + b[i - 1]*2\\
t[i] = (a[i - 1] + b[i - 1])*3 - b[i - 1]\\
t[i] = t[i - 1]*3 - b[i - 1]\\
\end {cases}
⎩⎪⎨⎪⎧t[i]=a[i−1]∗3+b[i−1]∗2t[i]=(a[i−1]+b[i−1])∗3−b[i−1]t[i]=t[i−1]∗3−b[i−1]
或者
{t[i]=a[i−1]∗3+b[i−1]∗2t[i]=(a[i−1]+b[i−1])∗2+a[i−1]t[i]=t[i−1]∗2+a[i−1]
\begin{cases}
t[i] = a[i - 1]*3 + b[i - 1]*2\\
t[i] = (a[i - 1] + b[i - 1])*2 + a[i - 1]\\
t[i] = t[i - 1]*2 + a[i - 1]
\end{cases}
⎩⎪⎨⎪⎧t[i]=a[i−1]∗3+b[i−1]∗2t[i]=(a[i−1]+b[i−1])∗2+a[i−1]t[i]=t[i−1]∗2+a[i−1]
总结
递推可以转化为数学方程组问题
本文深入探讨了使用C++实现的一种递推算法,通过具体的代码示例,详细解释了如何利用递推公式解决特定问题。文章展示了如何定义数组来存储中间结果,以及如何通过循环迭代更新这些结果,最终求解出所需的目标值。通过对递推过程的数学分析,揭示了递推算法背后的数学原理。
1490

被折叠的 条评论
为什么被折叠?



