04: Median of Two Sorted Arrays

两有序数组中位数
本文介绍了一种高效算法,用于计算两个已排序数组的中位数。通过三种不同的实现方式,包括直接合并、改进遍历及二分查找,详细探讨了各自的优缺点。最终,实现了O(log(m+n))的时间复杂度。

Median of Two Sorted Arrays

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

Example 1:

Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

Example 3:

Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000

Example 4:

Input: nums1 = [], nums2 = [1]
Output: 1.00000

Example 5:

Input: nums1 = [2], nums2 = []
Output: 2.00000

Constraints:

nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106

Solution

假设给定数组A、B,已排序。

  1. 合并A、B,生成C,中位数就是C数组中间的数
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
    int[] nums;
    int m = nums1.length;
    int n = nums2.length;
    nums = new int[m + n];
    if (m == 0) {
        if (n % 2 == 0) {
            return (nums2[n / 2 - 1] + nums2[n / 2]) / 2.0;
        } else {

            return nums2[n / 2];
        }
    }
    if (n == 0) {
        if (m % 2 == 0) {
            return (nums1[m / 2 - 1] + nums1[m / 2]) / 2.0;
        } else {
            return nums1[m / 2];
        }
    }

    int count = 0;
    int i = 0, j = 0;
    while (count != (m + n)) {
        if (i == m) {
            while (j != n) {
                nums[count++] = nums2[j++];
            }
            break;
        }
        if (j == n) {
            while (i != m) {
                nums[count++] = nums1[i++];
            }
            break;
        }

        if (nums1[i] < nums2[j]) {
            nums[count++] = nums1[i++];
        } else {
            nums[count++] = nums2[j++];
        }
    }

    if (count % 2 == 0) {
        return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;
    } else {
        return nums[count / 2];
    }
}
/**
* 时间复杂度:遍历全部数组 O(m+n)
* 空间复杂度:开辟了一个数组,保存合并后的两个数组 O(m+n)
*/
  1. 无需合并,已知A、B,那么就知道了合成数组的总长度len,那么中位数的位置也就知道了。此时有两种情况

    • len为偶数,那么只需找到合成数组的第len/2 和 第len/2 + 1个元素的值的平均值
    • len为奇数,那么只需找到合成数组的第len/2 个元素值

    维护两个指针p, q,遍历A、B即可。分别从小到大遍历数组直到指定位置

    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        int len = m + n;
        int p = -1, q = -1;
        int aStart = 0, bStart = 0;
        for (int i = 0; i <= len / 2; i++) {
            p = q;
            if (aStart < m && (bStart >= n || A[aStart] < B[bStart])) {
                q = A[aStart++];
            } else {
                p = B[bStart++];
            }
        }
        if ((len & 1) == 0)
            return (p + q) / 2.0;
        else
            return right;
    }
    /**
    * 时间复杂度:遍历全部数组 O(m+n)
    * 空间复杂度:开辟了一个数组,保存合并后的两个数组 O(1)
    */
    
  2. 二分

    以上方法的时间复杂度都是o(m + n),如何将时间复杂度降低至O(log(m + n))呢?看到log条件反射二分法

    由上一个解法我们一直,求两个数组的中位数可以分解为找第len/2的元素或者第len/2 和 第len/2 + 1个元素。那么问题就变成了找第k个小的问题了。

    第k小问题 我们一般使用分治的思路(快排的思路),此题也同样使用这个思路。

    analysis

    我们可以比较 A[k/2-1]和 B[k/2−1]。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0…k/2−2] 和 B[0…k/2−2],即k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有(k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。

    因此我们可以归纳出三种情况:

    • 如果 A[k/2−1]<B[k/2−1],则比A[k/2−1] 小的数最多只有A 的前k/2−1 个数和 B 的前k/2−1 个数,即比 A[k/2−1] 小的数最多只有 k−2 个,因此A[k/2−1] 不可能是第 k 个数,A[0] 到 A[k/2−1] 也都不可能是第 k 个数,可以全部排除。

    • 如果 A[k/2−1]>B[k/2−1],则可以排除B[0] 到B[k/2−1]。

    • 如果 A[k/2−1]=B[k/2−1],可以归入第一种情况处理。

    可以看到,比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除k/2 个不可能是第 k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。

    有以下三种情况需要特殊处理:

    • 如果 A[k/2−1] 或者 B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少 k 的值,而不能直接将 k 减去 k/2。

    • 如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。

    • 如果 k=1(最小的数),我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9
B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是 4 和 9,长度之和是 13,中位数是两个有序数组中的第 7 个元素,因此需要找到第 k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即 A[2] 和 B[2],如下面所示:

A: 1 3 4 9
       ↑
B: 1 2 3 4 5 6 7 8 9
       ↑

由于 A[2]>B[2],因此排除 B[0] 到 B[2],即数组 B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4。

下一步寻找,比较两个有序数组中下标为 k/2−1=1 的数,即 A[1] 和 B[4],如下面所示,其中方括号部分表示已经被排除的数。

A: 1 3 4 9
     ↑
B: [1 2 3] 4 5 6 7 8 9
             ↑

由于 A[1]<B[4],因此排除 A[0] 到 A[1],即数组A 的下标偏移变为 2,同时更新 kk 的值:k=k−k/2=2。

下一步寻找,比较两个有序数组中下标为 k/2−1=0 的数,即比较A[2] 和 B[3],如下面所示,其中方括号部分表示已经被排除的数。

A: [1 3] 4 9
         ↑
B: [1 2 3] 4 5 6 7 8 9
           ↑

由于A[2]=B[3],根据之前的规则,排除A 中的元素,因此排除A[2],即数组 A 的下标偏移变为 3,同时更新 kk 的值: k=k-k/2=1。

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于A[3]>B[3],因此第 k 个数是 B[3]=4。

A: [1 3 4] 9
           ↑
B: [1 2 3] 4 5 6 7 8 9
           ↑
public class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int n = nums1.length;
        int m = nums2.length;

        int len = n + m;

        if(len % 2 == 1) {
            int k = len / 2;
            double median = getKthElement(nums1, nums2, k + 1);
            return median;
        } else {
            int k1 = len / 2 - 1;
            int k2 = len / 2;

            double median = (getKthElement(nums1, nums2, k1 + 1) + getKthElement(nums1, nums2, k2 + 1)) / 2.0;
            return median;
        }
    }

    private double getKthElement(int[] nums1, int[] nums2, int k) {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */
        int n = nums1.length;
        int m = nums2.length;
        int index1 = 0, index2 = 0;
        while (true) {
            //边界
            if(index1 == n) {
                return nums2[index2 + k - 1];
            }
            if(index2 == m) {
                return nums1[index1 + k - 1];
            }
            if(k == 1) {
                return Math.min(nums1[index1], nums2[index2]);
            }
            // 正常情况
            int mid = k / 2;
            int newIndex1 = Math.min(index1 + mid, n) - 1;
            int newIndex2 = Math.min(index2 + mid, m) - 1;
            int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
            if(pivot1 < pivot2) {
                k -= (newIndex1 - index1 + 1);
                index1 = newIndex1 + 1;
            } else {
                k -= (newIndex2 - index2 + 1);
                index2 = newIndex2 + 1;
            }
        }
    }
}
/**
* 时间复杂度:遍历全部数组 O(log(m+n))
* 空间复杂度:开辟了一个数组,保存合并后的两个数组 O(1)
*/

TIP

此处非常感谢LeetCode-Solution提供的第三种方法的文案

本实践项目深入研究了基于C#编程环境与Halcon图像处理工具包的条码检测技术实现。该原型系统具备静态图像解析与动态视频分析双重功能,通过具体案例展示了人工智能技术在自动化据采集领域的集成方案。 C#作为微软研发的面向对象编程语言,在Windows生态系统中占据重要地位。其语法体系清晰规范,配合.NET框架提供的完备类库支持,能够有效构建各类企业级应用解决方案。在计算机视觉技术体系中,条码识别作为关键分支,通过机器自动解析商品编码信息,为仓储管理、物流追踪等业务场景提供技术支持。 Halcon工具包集成了工业级图像处理算法,其条码识别模块支持EAN-13、Code128、QR码等多种国际标准格式。通过合理配置检测算子参,可在C#环境中实现高精度条码定位与解码功能。项目同时引入AForge.NET开源框架的视频处理组件,其中Video.DirectShow模块实现了对摄像设备的直接访问控制。 系统架构包含以下核心模块: 1. Halcon接口封装层:完成图像处理功能的跨平台调用 2. 视频采集模块:基于AForge框架实现实时视频流获取 3. 静态图像分析单元:处理预存图像文件的条码识别 4. 动态视频解析单元:实现实时视频流的连续帧分析 5. 主控程序:协调各模块工作流程 系统运行时可选择图像文件输入或实时视频采集两种工作模式。识别过程中将自动标注检测区域,并输出解码后的标准条码据。该技术方案为零售业自动化管理、智能仓储系统等应用场景提供了可靠的技术实现路径,对拓展计算机视觉技术的实际应用具有重要参考价。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
Java内存泄漏发现技术研究.pdf内容概要:本文围绕Java内存泄漏的发现技术展开研究,针对现有研究多集中于泄漏发生后的诊断与修复,而缺乏对泄漏现象早期发现方法的不足,提出了一套结合动态与静态分析的综合解决方案。动态方面,设计了一种面向泄漏的单元测试生成方法,通过识别高风险泄漏模块并生成具有泄漏检测能力的单元测试,实现早期泄漏发现;静态方面,提出基于模式的检测方法,重点识别因错误使用WeakHashMap等弱引用结构导致的内存泄漏,通过静态扫描源代码提前发现潜在缺陷。系统基于JUnit、CodePro Analytix和Soot等工具实现,实验验证了其在JDK等开源项目中发现已知泄漏缺陷的能力。; 适合人群:具备一定Java编程基础,从事软件开发、测试或质量保障工作1-3年的研发人员,以及对程序分析、内存管理感兴趣的研究生或技术人员。; 使用场景及目标:①帮助开发者在编码和测试阶段主动发现潜在内存泄漏,提升软件健壮性;②为构建自动化内存泄漏检测工具链提供理论与实践参考;③深入理解Java内存泄漏的常见模式(如WeakHashMap误用)及对应的动态测试生成与静态分析技术。; 阅读建议:建议结合Soot、JUnit等工具的实际操作进行学习,重点关注第三章和第四章提出的三类泄漏模块识别算法与基于模式的静态检测流程,并通过复现实验加深对溢出分析、指向分析等底层技术的理解。
本方案提供一套完整的锂离子电池健康状态评估系统,采用Python编程语言结合Jupyter交互式开发环境与MATLAB计算平台进行协同开发。该技术框架适用于高等教育阶段的毕业设计课题、专业课程实践任务以及工程研发项目。 系统核心算法基于多参退化模型,通过分析电池循环充放电过程中的电压曲线特性、内阻变化趋势和容量衰减规律,构建健康状态评估指标体系。具体实现包含特征参提取模块、容量回归预测模型和健康度评估单元三个主要组成部分。特征提取模块采用滑动窗口法处理时序据,运用小波变换消除测量噪声;预测模型集成支持向量回归与高斯过程回归方法,通过交叉验证优化超参;评估单元引入模糊逻辑判断机制,输出健康状态百分制评分。 开发过程中采用模块化架构设计,据预处理、特征工程、模型训练与验证等环节均实现独立封装。代码结构遵循工程规范,配备完整注释文档和单元测试案例。经严格验证,该系统在标准据集上的评估误差控制在3%以内,满足工业应用精度要求。 本方案提供的实现代码可作为研究基础,支持进一步功能扩展与性能优化,包括但不限于引入深度学习网络结构、增加多温度工况适配、开发在线更新机制等改进方向。所有核心函均采用可配置参设计,便于根据具体应用场景调整算法性能。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值