k倍区间

2017第八届蓝桥杯 K倍区间

标题: k倍区间 
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000) 
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)

输出
输出一个整数,代表K倍区间的数目。 
例如, 
输入: 
5 2 
1 
2 
3 
4 
5 
程序应该输出: 
6 
资源约定: 
峰值内存消耗(含虚拟机) < 256M 
CPU消耗 < 2000ms 

思路:如果两个数x和y对k求余的值相同,那么abs(x - y) % k == 0,首先O(n)预处理,dp(i)表示前i个数的和。



详细代码:


[cpp] view plain copy
#include <cstdio>  
#include <cmath>  
#include <cctype>  
#include <algorithm>  
#include <cstring>  
#include <utility>  
#include <string>  
#include <iostream>  
#include <map>  
#include <set>  
#include <vector>  
#include <queue>  
#include <stack>  
using namespace std;  
#pragma comment(linker, "/STACK:1024000000,1024000000")   
#define eps 1e-10  
#define inf 0x3f3f3f3f  
#define PI pair<int, int>   
typedef long long LL;  
const int maxn = 1e6 + 5;  
int cnt[maxn];  
LL sum[maxn];  
int main() {  
    int n, k;  
    while(scanf("%d%d", &n, &k) == 2) {  
        int val;  
        sum[0] = 0;  
        for(int i = 1; i <= n; ++i) {  
            scanf("%d", &val);  
            sum[i] = sum[i-1] + val;  
        }  
        memset(cnt, 0, sizeof(cnt));  
        cnt[0] = 1; //区间(0, i)的和为k的倍数   
        for(int i = 1; i <= n; ++i) {  
            cnt[sum[i] % k]++;  
        }  
        LL ans = 0;  
        for(int i = 0; i < k; ++i) {  
            if(cnt[i])  
                ans += (LL)cnt[i] * (cnt[i]-1) / 2; //任选两个作为区间的上下界  
        }  
        printf("%lld\n", ans);  
    }  
    return 0;  
}   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值