k倍区间(蓝桥杯)

题目描述

给定一个长度为 N 的数列,A1,A2,⋯AN,如果其中一段任意连续的子序列 Ai.....Aj(i<=j)的和为K的倍数,则称该序列区间为k倍区间。

你能求出数列中总共有多少个 K 倍区间吗?

输入描述

第一行包含两个整数 NK( 1≤N,K≤100000 )。

以下 N 行每行包含一个整数 Ai ( 1≤Ai≤100000 )。

输出描述

输出一个整数,代表 K 倍区间的数目。

思路:首先用一个数组s[100001]记录所给数列的前缀和(即前i项和)。然后有一个知识点,如果前i项和s[i] 和 前j项和s[j] 对k取余 的结果相同,可以得出结论:第i项到第j项和就是k的倍数。因此我们再定义一个数组,cnt[100001],记录对k取余相同的项的个数,举个例子,如果s[i]%k == 1,则cnt[1]++。

然后假如有n个对k取余相同的数,则这n个数任意两个相减都为一个k倍区间。例如 cnt[1] = 3,就是对对k取余为1的s有三个,那么这三个前缀和任意两个相减获得的区间就是k倍区间,那么就是C(32)。所以C(cnt[i] 2)就是cnt[i]中的k倍区间个数。特例,当为cnt[0]时,除了任意两个前缀和之差是k倍区间,该前缀和本身也是k倍区间。即cnt[0]要比对k取余为0的前缀和个数多一个。

最后把所有的C(cnt[i] 2)相加就行。C(cnt[i] 2) = cnt[i] * (cnt[i] - 1)/2

代码如下

#include <iostream>
using namespace std;
int main(){
    int N,K;
    long long count=0;
    cin >> N >> K;
    long long s[100001] = {0};
    long long cnt[100001] = {0};
    cnt[0] = 1;
    for(int i=1;i<=N;i++){
        cin >> s[i];
        s[i] = s[i] + s[i-1];
        cnt[s[i]%K]++;
    }
    for(int i =0;i<K;i++){
        count+=(cnt[i]*(cnt[i]-1))/2;
    }
    cout << count <<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值