前言
一看这个专有名词“二维凸包”,我以为是和“卡壳”、“树链剖分”一样的毒瘤题qwq...
还好还好,它还很善良,我自己无压力打出来了
题目
题目描述
农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏。他建造的围栏必须包括他的奶牛喜欢吃草的所有地点。对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度。
输入格式
输入数据的第一行包括一个整数 N。N(0 <= N <= 10,000)表示农夫约翰想要围住的放牧点的数目。接下来 N 行,每行由两个实数组成,Xi 和 Yi,对应平面上的放牧点坐标(-1,000,000 <= Xi,Yi <= 1,000,000)。数字用小数表示。
输出格式
输出必须包括一个实数,表示必须的围栏的长度。答案保留两位小数。
输入输出样例
输入
4
4 8
4 12
5 9.3
7 8
输出
12.00
说明/提示
题目翻译来自NOCOW。
USACO Training Section 5.1
分析
(一)凸包是什么
形象来说就是【一条刚好包着所有点的橡皮圈】
例如本题有一组数据,我画出了对应的图像:
(二)怎么求凸包上的点、周长等等
求凸包,最核心的就是求出凸包上的点,我们分“下凸包”和“上凸包”处理,其实本质差不多,只是判断入栈出栈的条件不同
1.我们先将点按照X-Y排序(x为第一关键字,y为第二关键字)
这样做的目的是让最左下角的点和最右上角的点都被包含,就能保证所有点都被凸包包含啦
2.分别求上凸包和下凸包,最后像盖锅盖一样上下一拼,就是所求的凸包了
【下凸包】
1)栈定义的结构体,id为存入的点的编号,k为该点与前一个栈中点的直线斜率
2)第一个点,编号为1,斜率设为 - INF,入栈
因为1需要保留下来算答案,而下凸包形成时条件为斜率越小越好,所以设为 -INF 使得点1不会被踢出栈
第二个点,编号为2,斜率为2和1两坐标算出的结果,入栈
3)枚举3~n的点,若当前点 i 与栈顶元素 j 的斜率小于 j 之前形成的斜率,就把 j 踢出栈,
直到 i 斜率大于等于栈顶元素,i 入栈
【上凸包】和下凸包差不多
1)栈定义的结构体,id为存入的点的编号,k为该点与前一个栈中点的直线斜率
2)第一个点,编号为1,斜率设为 INF,入栈
因为1需要保留下来算答案,而下凸包形成时条件为斜率越大越好,所以设为 INF 使得点1不会被踢出栈
第二个点,编号为2,斜率为2和1两坐标算出的结果,入栈
3)枚举3~n的点,若当前点 i 与栈顶元素 j 的斜率大于 j 之前形成的斜率,就把 j 踢出栈,
直到 i 斜率小于等于栈顶元素,i 入栈
STL代码
大家都用数组模拟,就我用STL=。=...
/*
ID:lunasmi2
TASK:fc
LANG:C++
*/
#include<cstdio>
#include<cmath>
#include<stack>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=10000,INF=0x3f3f3f3f;
double ans;
int n;
struct node
{
int id;
double k;
};
stack<node> s1,s2;
struct Node
{
double x,y;
}a[MAXN+5];
bool cmp(Node a,Node b)//双关键字排序
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
double Cal(int s,int t)//计算距离
{
return sqrt((a[s].x-a[t].x)*(a[s].x-a[t].x)+(a[s].y-a[t].y)*(a[s].y-a[t].y));
}
double Calk(int s,int t)//计算斜率
{
if(a[t].x-a[s].x==0)
return INF;
return (a[t].y-a[s].y)/(a[t].x-a[s].x);
}
void Solve1()//下凸包
{
if(n==0||n==1)
return ;
s1.push((node){1,-INF});//点1会参与答案的计算,k设特殊值将其保留
s1.push((node){2,Calk(1,2)});
for(int i=3;i<=n;i++)
{
double k1=-INF,k2;
while(!s1.empty())
{
k1=Calk(s1.top().id,i);
k2=s1.top().k;
if(k1<k2)
s1.pop();
else
break;
}
if(k1!=-INF)
s1.push((node){i,k1});
}
}
void Solve2()//上凸包
{
if(n==0||n==1)
return ;
s2.push((node){1,INF});//点1会参与答案的计算,k设特殊值将其保留
s2.push((node){2,Calk(1,2)});
for(int i=3;i<=n;i++)
{
double k1=-INF,k2;
while(!s2.empty())
{
k1=Calk(s2.top().id,i);
k2=s2.top().k;
if(k1>k2)
s2.pop();
else
break;
}
if(k1!=-INF)
s2.push((node){i,k1});
}
}
int main()
{
//freopen("fc.in","r",stdin);
//freopen("fc.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+n+1,cmp);
//形成凸包 :
Solve1();
Solve2();
//计算答案:
node t1,t2;
t1.id=INF;
while(!s1.empty())
{
t2=s1.top();s1.pop();
if(t1.id==INF)
{
t1=t2;
continue;
}
ans+=Cal(t1.id,t2.id);
t1=t2;
}
t1.id=INF;
while(!s2.empty())
{
t2=s2.top();s2.pop();
if(t1.id==INF)
{
t1=t2;
continue;
}
ans+=Cal(t1.id,t2.id);
t1=t2;
}
printf("%.2f\n",ans);
return 0;
}
数组模拟栈代码
咕掉惹QAQ...最近在打(非常恶心的)搜索题
其实实现应该差不多,只是好像老师说数组会比用STL快,考试、比赛时尽量用数组模拟
某大佬的叉积代码
来源:https://www.luogu.org/blog/DanKuroto/solution-p2742
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
struct node{
double x,y;
}p[10005],s[10005];
int n;
double ans,mid;
double CJ(node a1,node a2,node b1,node b2)
{
return (a2.x-a1.x)*(b2.y-b1.y)-(b2.x-b1.x)*(a2.y-a1.y);
}//叉积大于0,则a左转后到b
double dis(node p1,node p2)
{
return sqrt( (double)(p2.y-p1.y)*(p2.y-p1.y)*1.0+(double)(p2.x-p1.x)*(p2.x-p1.x)*1.0 );
}//两点距离公式
bool cmp(node p1,node p2)
{
double tmp=CJ(p[1],p1,p[1],p2);
if(tmp>0) return 1;
if(tmp==0 && dis(p[0],p1)<dis(p[0],p2)) return 1;
return 0;
}//按照夹角的大小排序
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
if(i!=1&&p[i].y<p[1].y)
{
mid=p[1].y;p[1].y=p[i].y;p[i].y=mid;
mid=p[1].x;p[1].x=p[i].x;p[i].x=mid;
}
}
//init
sort(p+2,p+1+n,cmp);//按照夹角大小
s[1]=p[1];
int tot=1;//因为最低点一定在凸包内
for(int i=2;i<=n;i++)
{
while(tot>1&&CJ(s[tot-1],s[tot],s[tot],p[i])<=0) tot--;
tot++;
s[tot]=p[i];
}
s[tot+1]=p[1];
for(int i=1;i<=tot;i++) ans+=dis(s[i],s[i+1]);
printf("%.2lf\n",ans);
return 0;
}
1 . 打完题解后,感觉还是有的说的不清楚(就像我看别人的题解时一样),现在拿出参考资料,不懂的话,大家可以看一下百度百科:凸包和数学:凸包算法详解
2 . 打完这题可以看一看月赛的 EEE 题 ( 有难度 ),P4756 Added Sequence
总结
看到有人说很难,但是我觉得并没有啥难理解的,估计是自己想的方法比较简单=。=...
有机会可以学一下叉积,但是我现在还没学向量之类的东西(= ^ =)..