LeetCode打卡之Unique Paths II

题目

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?
在这里插入图片描述
An obstacle and empty space is marked as 1 and 0 respectively in the grid.

题目大意就是说如果网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

分析

这是一道典型的动态规划的问题,我们使用arr[i][j]来记录从(0,0)(i,j)的路径个数,因为只能向右和向下走,所以我们很容易就能得出arr[i][j] = arr[i-1][j] + arr[i][j-1],即到arr[i][j]的路径个数等于到达它上面一个方格的路劲数加上到达它左边方格的路径数。

分析
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& v) {
        int m = v.size();
        int n = v[0].size();
        int arr[m][n];
        arr[0][0] = v[0][0] == 1 ? 0 : 1;
 		for (int i = 0; i < m; ++i){
			arr[i][0] = (v[i][0] == 0 && arr[i-1][0] == 1) ? 1 : 0;
		}
		for (int i = 0; i < n; ++i){
			arr[0][i] = (v[0][i] == 0 && arr[0][i-1] == 1) ? 1 : 0;
		}
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if(v[i][j] == 1) {
                    arr[i][j] = 0;
                }
                else {
                    arr[i][j] = arr[i-1][j] + arr[i][j-1];
                }
            }
        }
        return arr[m-1][n-1];
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值