64.乐理基础-打拍子-前八后十六、前十六后八拍子

文章介绍了音乐乐理中的八分音符和十六分音符在打拍子中的应用,包括前八后十六和前十六后八的节奏型示例,并通过实例演示了如何在弱起小节中进行模唱练习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置内容:63.乐理基础-打拍子-四十六-CSDN博客

 

前八后十六指的是前半拍是一个八分音符,后半怕是两个十六分音符的节奏型,如图1。

前十六后八刚好就与前八后十六反着,如图3。

 

图1:在以四分音符为一拍的时候这三个音符加起来的总拍数仍然是一拍,所以这三个音符要在一个拍子里打完,do是八分音符,re和mi是十六分音符,这样就是手往下的时候唱do,因为do是八分音符是0.5拍所以占据V字的一半,手往上的时候唱er和mi,如图2

eba167cad4174b0d97c52c3d5cb72914.png

图2:

d3ae6b3e3d43441bbe48cc91f0d172d4.png

图3:它是前半拍是两个十六分音符,后半拍一个八分音符,加起来仍然是一拍,所以也在一个V字里打完,do、er是两个十六分音符,mi是八分音符,那就是手往下的时候长do、er,抬手的时候唱mi,如图4。

8c71133a321e4d5e96818d5055eee96f.png

如图4:

cb4c6b12665541d9847d3e42b5d51789.png

例子1:下图乐谱的开始是以弱起小节的方式开始的,在模唱的时候弹降E键,因为sol是加了低音点(高音的、低音点说明)的

c532ece4571b4d3790311712311cb317.png

例子2: 

6e8acf6f31f34e73bbedcc957f9ce410.png

练习1:

ec08218b85a04ba3b569870838d9512e.png

练习2:

7f7cb7323ba14a0e80201560f20a3b26.png

练习3:它是弱起小节开始,所以弹一下开始的音(一般音乐都是以do开始),1=B时la是升G键,这时模唱la

cc2d64929f224fbf8e11e72a0d7810d3.png

b86b4a0d9489438188cf5662ba7a26cd.jpg

 

基于springboot+vue后端分离,学生心理咨询评估系统(源码+Mysql数据库+视频+论文+PPT+教程),高分项目,开箱即用(毕业设计)(课堂设计) 使用旧方法对学生心理咨询评估信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在学生心理咨询评估信息的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。 这次开发的学生心理咨询评估系统有管理员和用户。管理员可以管理个人中心,用户管理,试题管理,试卷管理,考试管理等。用户参加考试。。经过面自己查阅的网络知识,加上自己在学校课堂上学习的知识,决定开发系统选择B/S模式这种高效率的模式完成系统功能开发。这种模式让操作员基于浏览器的方式进行网站访问,采用的主流的Java语言这种面向对象的语言进行学生心理咨询评估系统程序的开发,后台采用Spring Boot框架,在数据库的选择上面,选择功能强大的MySQL数据库进行数据的存放操作。 学生心理咨询评估系统被人们投放于现在的生活中进行使用,该款管理类软件就可以让管理人员处理信息的时间介于十几秒之间。在这十几秒内就能完成信息的编辑等操作。有了这样的管理软件,学生心理咨询评估信息的管理就离无纸化办公的目标更贴近了。
道路坑洞与车牌人物多目标检测数据集 一、基础信息 数据集名称:道路坑洞与车牌人物多目标检测数据集 数据规模: - 训练集:3,900张道路场景图片 - 验证集:194张标注图片 - 测试集:72张评估图片 目标类别: - 行人(Human):道路场景中的行人目标 - 车牌(Licence):车辆牌照及编号信息 - 坑洞(Pothole):路面凹陷破损区域 - 复合目标(Potholes-carplate-and-people):同时包含坑洞/车牌/行人的复杂场景 技术规格: - 标注格式:YOLO格式标注框 - 数据格式:JPEG/PNG道路实拍图像 二、适用场景 自动驾驶感知系统开发: 支持车载摄像头实时检测道路坑洞、行人及车牌信息,提升自动驾驶系统的环境感知能力。 道路养护评估系统: 通过检测路面坑洞分布和严重程度,为市政道路维护提供量化评估依据。 交通监控解决方案: 适用于智能交通系统中异常路况检测、车牌识别与行人安全预警等多任务场景。 计算机视觉研究: 提供多目标联合检测的实战数据,支持目标检测、异常区域定位等算法研究。 三、核心优势 多目标协同检测: 覆盖道路场景四大关键目标类别,支持单帧图像中同时检测路面缺陷、车辆牌照和行人目标。 真实场景多样性: 包含不同光照条件、天气状况和道路类型的实际道路图像,确保模型泛化能力。 工业级兼容性: 原生YOLO格式标注可直接应用于YOLOv5/v7/v8等主流检测框架,降低数据转换成本。 专业数据标注: 所有标注框经过双重质量校验,确保目标定位精度和类别标注准确性,框体坐标误差小于2%。
高空视角多类交通目标检测数据集 一、基础信息 数据集名称:高空视角多类交通目标检测数据集 数据规模: - 训练集:2,077张航拍图像 - 验证集:593张航拍图像 - 测试集:294张航拍图像 分类体系: 11类精细标注: - 工程机械类:农业车辆、工程车辆 - 交通工具类:轿车/卡车/巴士/火车/摩托车/船 - 特殊目标类:行人(UAP)、无人机相关目标(UAI) 技术特性: - 标注格式:YOLO格式边界框标注 - 数据视角:无人机航拍/高空俯视视角 - 场景特征:包含城市道路、建筑工地、港口、农田等多种空中监控场景 二、核心应用 智慧城市管理系统: - 空中交通流量监控与分析 - 大型施工场地设备调度监测 - 港口船舶停靠位置检测 农业智能化应用: - 农用机械作业轨迹追踪 - 农田区域车辆准入监控 - 农作物运输车辆识别 自动驾驶模型训练: - 提供独特俯视视角训练数据 - 增强车辆检测模型的空间感知能力 - 支持多尺度目标识别训练 无人机应用开发: - 航拍目标实时检测算法开发 - 低空领域飞行器识别 - 应急场景人员搜救定位 三、独特优势 视角多样性优势: - 涵盖0-400米不同航拍高度 - 包含多国道路场景样本 - 覆盖昼夜不同光照条件 目标检测强化特性: - 特别标注工程车辆细分类别(挖掘机/推土机等) - 包含特殊空中目标类别(UAI/UAP) - 密集小目标占比达32%(如远距离车辆/人员) 工程化支持能力: - 完整训练验证测试划分 - 兼容YOLO系列算法开箱即用 - 提供航拍场景负样本增强包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值