- 基本介绍
- 模板题目
- 代码实现
基本介绍
Tarjan离线算法 这里用来做最近公共祖先
本来是想写一下Tarjan的做法
但是这个博客太好了(Vendetta BlogsJVxie的个人博客)
放这里一起学习吧
模板题目
题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
输入样例:
5 5 4
3 1
2 4
5 1
1 4
2 4
3 2
3 5
1 2
4 5
输出样例:
4
4
1
4
4
样例说明
第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。
故输出依次为4、4、1、4、4。
代码实现
=============================================================
Tarjan LCA
已修改
=============================================================
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
using namespace std;
#define in =read()
#define ll long long
const int size = 500000 + 50;
ll n,m,s;
ll site1,site2;
ll head[size],father[size],vis[size],qhead[size],num[size];
struct apoint{
ll x; ll y;
}a[2*size];
struct qpoint{
ll x; ll y; ll z;
}q[2*size];
inline ll read()
{
ll num=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch)){
num=num*10+ch-'0';
ch=getchar();
}
return num*f;
}
ll find(ll x)
{
if(father[x]!=x)father[x]=find(father[x]);
return father[x];
}
inline void unionn(ll x,ll y)
{
ll xx=find(x),yy=find(y);
father[yy]=xx;
}
inline void add(ll x,ll y)
{
a[++site1].x=head[x];
a[site1].y=y;
head[x]=site1;
}
inline void qadd(ll x,ll y,ll z)
{
q[++site2].x=qhead[x];
q[site2].y=y;
q[site2].z=z;
qhead[x]=site2;
}
inline void tarjan(ll x)
{
vis[x]=1;
int y,z;
for(int i=head[x];i;i=a[i].x){
y=a[i].y;
if(!vis[y]){
tarjan(y); unionn(x,y);
}
}
for(int i=qhead[x];i;i=q[i].x){
y=q[i].y; z=q[i].z;
if(vis[y])num[z]=find(y);
}
}
int main()
{
n in; m in; s in;
int x,y;
for(int i=1;i<n;i++){
x in; y in;
add(x,y); add(y,x);
}
for(int i=1;i<=n;i++)father[i]=i;
for(int i=1;i<=m;i++){
x in; y in;
qadd(x,y,i); qadd(y,x,i);
}
tarjan(s);
for(int i=1;i<=m;i++){
printf("%d\n",num[i]);
}
}
//COYG