子鱼inf_lyceum
码龄8年
关注
提问 私信
  • 博客:34,529
    34,529
    总访问量
  • 8
    原创
  • 792,665
    排名
  • 18
    粉丝
  • 0
    铁粉

个人简介:学废了

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:捷克
  • 加入CSDN时间: 2016-10-05
博客简介:

子鱼的博客

博客描述:
学习记录和资源分享
查看详细资料
个人成就
  • 获得76次点赞
  • 内容获得21次评论
  • 获得107次收藏
创作历程
  • 10篇
    2021年
  • 3篇
    2020年
成就勋章
TA的专栏
  • 数理逻辑和自动机理论笔记
    5篇
兴趣领域 设置
  • 人工智能
    opencvnlp
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

用AI引导人类直觉促进数学发展 【DeepMind Nature2021.12.1】

本文提供了在机器学习的帮助下发现的纯数学新的基本结果的例子——证明了机器学习可以帮助数学家发现新猜想和定理的方法。我们提出了一个利用机器学习来发现数学对象之间的潜在模式和关系的过程,用归因技术来理解它们,并利用这些观察来指导直觉和提出猜想。
翻译
发布博客 2021.12.03 ·
1190 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

自动形式化与通用人工智能:Google Research 2020年报告

自动形式化系统可以学习阅读自然语言内容,并将其转化为抽象的、机器可验证的形式化语言。构造自动形式化系统最理想的方式是用最少的人类交互,从未标记的训练数据中引导。这是一项艰巨的任务,需要强大的自动推理和自然语言处理能力。本文认为,自动形式化很有前途,系统学习数学和计算机科学的所有领域中的复杂的,通用的推理,对数学,软件合成有深远的影响。本文提供了实现这些目标的现实路径的大纲,并给出了最近的调查结果,以支持这一方向的可行性。
翻译
发布博客 2021.09.18 ·
461 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

用vscode编辑markdown时使用tikz画图的配置流程

用markdown做笔记时需要画比较复杂的图,决定用latex的tikz包,搜索了一下发现居然没有现成可用的教程,于是记录一下自己的配置过程,给md笔记党做个教程。1.正常配置vscode的markdown,注意要安装Markdown Preview Enhanced插件,这里是文档。还要安装Latex和pdf2svg。2.据说Markdown Preview Enhanced支持渲染CodeChunk中代码的运行结果,给出了这种效果:但是我搞了好久也没成功,表现出来的效果是这样:查阅文档了解
原创
发布博客 2021.07.08 ·
2535 阅读 ·
3 点赞 ·
1 评论 ·
7 收藏

【学习笔记】自动机理论、语言和计算导论(五:上下文无关文法和上下文无关语言)

Content上下文无关文法上下文无关文法
原创
发布博客 2021.04.16 ·
584 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【学习笔记】自动机理论、语言和计算导论(三)

Content正则表达式正则表达式
原创
发布博客 2021.04.10 ·
436 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

【学习笔记】自动机理论、语言和计算导论(一、二)

Content自动机理论的中心概念自动机理论的中心概念有穷自动机 有穷自动机涉及一些状态和当响应输入时在状态之间的转移。用来构造许多不同种类的软件,例如包括编译器的词法分析部件以及电路与协议正确性的验证系统。正则表达式 这是描述有穷自动机所表示的相同模式的结构记号。用在许多常见类型的软件中,例如包括查找文本模式或文件名模式的工具。上下文无关文法 这是描述程序设计语言的结构以及相关的串集合的重要记号;用来构造编译器的语法分析部件。图灵机 这是为真实计算机的能力建立模型的自动机。图灵机允许研究可判定性
原创
发布博客 2021.04.03 ·
1597 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

【学习笔记】面向计算机科学的数理逻辑:系统建模与推理 (C2谓词逻辑)

谓词逻辑(predicate logic)也称一阶逻辑(first-order logic),可以处理命题内部的逻辑结构,以及包含全称量词和存在量词的逻辑关系。本文是《面向计算机科学的数理逻辑》第二章学习笔记。
原创
发布博客 2021.03.31 ·
1654 阅读 ·
1 点赞 ·
0 评论 ·
16 收藏

【学习笔记】面向计算机科学的数理逻辑:系统建模与推理 (C1命题逻辑)

ContentChapter 1 命题逻辑逻辑符号证明规则Chapter 1 命题逻辑逻辑符号negation: ¬p
eg p¬p disjunction: p∨qp \lor qp∨q conjunction: p∧qp \land qp∧q implication: p→qp \to qp→q证明规则通过将证明规则(proof rules)应用于前提(premises)公式,推断(infer)出结论(conclusion)。ϕ1,ϕ2,…,ϕn⊢ψ\phi_1,\phi_2,\dot
原创
发布博客 2021.03.15 ·
2615 阅读 ·
1 点赞 ·
0 评论 ·
20 收藏

[数学]二维对数正态分布的概率分布,期望,方差和相关系数

计算二维对数正态分布的相关系数
原创
发布博客 2021.03.08 ·
19978 阅读 ·
62 点赞 ·
10 评论 ·
35 收藏

统计图表的Captioning和VQA——一些论文笔记

本文收集整理了统计图的信息提取任务相关的论文DVQA: Understanding Data Visualizations via Question Answering
原创
发布博客 2021.02.18 ·
1208 阅读 ·
1 点赞 ·
5 评论 ·
7 收藏

【论文翻译】(UAI 2018)使用感知预测网络进行潜在物理属性的无监督学习

目录摘要1 介绍译者:子鱼论文地址:https://arxiv.org/pdf/1807.09244.pdf参考文献和补充材料请见原文。译者水平有限,错误难免,恳请读者批评指正。译者目前正在做这个方向的研究,欢迎读者与我交流,可博客留言或发邮件至infinitylyceum@163.com摘要我们提出了一个从潜在物体的相互作用中学习其属性的完全无监督的框架:感知预测网络(PPN)。PPN由一个感知模块和一个预测模块组成,感知模块提取潜在物体属性的表示,预测模块使用这些提取的属性来模拟系统动力学,P
翻译
发布博客 2020.10.26 ·
374 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

【论文翻译】(NIPS2018)Flexible Neural Representation for Physics Prediction 物理预测的灵活神经表示

摘要人类有一种非凡的能力来理解其环境中物体的物理动力学,灵活地捕捉多个细节水平上的复杂结构和相互作用。受到这种能力的启发,我们提出了一种层次化基于粒子的对象表示,它涵盖了各种各样的三维物体,包括任意刚性几何形状和可变形材料。然后我们描述了层次关系网络(Hierarchical Relation Network, HRN),这是一种基于分层图卷积的端到端可微神经网络,它学习在这种表示中预测物理动力学。与其他神经网络基准方法相比,HRN精确地处理复杂的碰撞和非刚性变形,在新设置中在长时间尺度下生成可信的动力学
翻译
发布博客 2020.10.22 ·
633 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

【论文翻译】(ECCV2020)Learning Object Permanence from Video 从视频中学习客体永久性

**客体永久性**(Object Permanence)让人们可以推理不可见物体的位置,因为人们知道当一个物体不可直接感知时物体依旧存在。客体永久性在建立世界模型时很重要,因为自然视觉场景中的物体动态地互相遮挡或被包含。发展心理学的深入研究表明,客体永久性是一项具有挑战性的任务,是通过广泛的经验学习的。本文介绍了从带标签视频中学习客体永久性的计划。我们解释了为什么这个学习任务可以被分解成四个部分:(1)可见的物体、(2)被遮挡的物体、(3)被另一个容器包含的物体、(4)被一个容器搬运的物体。第四个子任务最
翻译
发布博客 2020.10.19 ·
749 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏