[数学]二维对数正态分布的概率分布,期望,方差和相关系数

最近遇到了一个联合对数正态分布的相关系数的问题,搜遍全网无果,索性自己动手。本文借鉴了这个知乎回答

首先我们有二维正态分布:
X , Y ∼ B V N ( μ x , μ y , σ x 2 , σ y 2 , ρ x y ) X,Y\sim \mathbf{BVN}(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho_{xy}) X,YBVN(μx,μy,σx2,σy2,ρxy)

取对数之后我们会得到二维对数正态分布的概率密度函数。只写了第一象限的函数表达式,其他地方都是0。
f ( x , y ) = 1 2 π 1 − ρ x y 2 σ x σ y x y exp ⁡ [ − 1 2 ( 1 − ρ x y 2 ) ( ( ln ⁡ x − μ x ) 2 σ x 2 − 2 ρ x y ( ln ⁡ x − μ x ) ( ln ⁡ y − μ y ) σ x σ y + ( ln ⁡ y − μ y ) 2 σ y 2 ) ] f(x,y)=\frac{1}{2\pi \sqrt{1-\rho_{xy}^2}\sigma_x\sigma_y xy}\exp \left[\frac{-1}{2(1 - \rho_{xy}^2)}\left(\frac{(\ln x-\mu_x)^2}{\sigma_x^2}-\frac{2\rho_{xy}(\ln x-\mu_x)(\ln y-\mu_y)}{\sigma_x\sigma_y}+\frac{(\ln y-\mu_y)^2}{\sigma_y^2}\right)\right] f(x,y)=2π1ρxy2 σxσyxy1exp[2(1ρxy2)1(σx2(lnxμx)2σxσy2ρxy(lnxμx)(lnyμy)+σy2(lnyμy)2)]

引用链接里有边缘分布(一维情况下)的期望和方差的推导过程,这里只写结论:
E ( X ) = exp ⁡ ( μ x + σ x 2 2 ) D ( X ) = exp ⁡ ( 2 μ x + σ x 2 ) ( exp ⁡ ( σ x 2 ) − 1 ) E(X)=\exp(\mu_x+\frac{\sigma_x^2}{2}) \\ D(X)=\exp(2\mu_x+\sigma_x^2)(\exp(\sigma_x^2)-1) E(X)=exp(μx+2σx2)D(X)=exp(2μx+σx2)(exp(σx2)1)

接下来想算相关系数。首先我们有相关系数的公式:
ρ = C O V ( X , Y ) D ( X ) D ( Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) \rho=\frac{COV(X,Y)}{\sqrt{D(X)D(Y)}}=\frac{E(XY)-E(X)E(Y)}{\sqrt{D(X)D(Y)}} ρ=D(X)D(Y) COV(X,Y)=D(X)D(Y) E(XY)E(X)E(Y)

关键一步是计算 E ( X Y ) E(XY) E(XY)
E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y E(XY) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)\mathbf{d}x\mathbf{d}y E(XY)=++xyf(x,y)dxdy

代入 f ( x , y ) f(x,y) f(x,y)
E ( X Y ) = ∫ 0 + ∞ ∫ 0 + ∞ 1 2 π 1 − ρ x y 2 σ x σ y exp ⁡ [ − 1 2 ( 1 − ρ x y 2 ) ( ( ln ⁡ x − μ x ) 2 σ x 2 − 2 ρ x y ( ln ⁡ x − μ x ) ( ln ⁡ y − μ y ) σ x σ y + ( ln ⁡ y − μ y ) 2 σ y 2 ) ] d x d y E(XY) = \int_{0}^{+\infty}\int_{0}^{+\infty}\frac{1}{2\pi \sqrt{1-\rho_{xy}^2}\sigma_x\sigma_y}\exp \left[\frac{-1}{2(1 - \rho_{xy}^2)}\left(\frac{(\ln x-\mu_x)^2}{\sigma_x^2}-\frac{2\rho_{xy}(\ln x-\mu_x)(\ln y-\mu_y)}{\sigma_x\sigma_y}+\frac{(\ln y-\mu_y)^2}{\sigma_y^2}\right)\right]\mathbf{d}x\mathbf{d}y E(XY)=0+0+2π1ρxy2 σxσy1exp[2(1ρxy2)1(σx2(lnxμx)2σxσy2ρxy(lnxμx)(lnyμy)+σy2(lnyμy)2)]dxdy

作变换("简单的"二次型标准化)
u = ln ⁡ x − μ x σ x − ( ρ x y σ y + σ x ) , v = ln ⁡ y − μ y σ y − ( ρ x y σ x + σ y ) u=\frac{\ln x - \mu_x}{\sigma_x}-(\rho_{xy}\sigma_y+\sigma_x),\quad v=\frac{\ln y - \mu_y}{\sigma_y}-(\rho_{xy}\sigma_x+\sigma_y) u=σxlnxμx(ρxyσy+σx),v=σylnyμy(ρxyσx+σy)

逆变换及其微分
x = exp ⁡ ( σ x u + ρ x y σ x σ y + σ x 2 + μ x ) , y = exp ⁡ ( σ y u + ρ x y σ x σ y + σ y 2 + μ y ) , d x = σ x exp ⁡ ( σ x u + ρ x y σ x σ y + σ x 2 + μ x ) d u , d y = σ y exp ⁡ ( σ y u + ρ x y σ x σ y + σ y 2 + μ y ) d u . x=\exp(\sigma_x u + \rho_{xy}\sigma_x\sigma_y+\sigma_x^2+\mu_x),\\ y=\exp(\sigma_y u + \rho_{xy}\sigma_x\sigma_y+\sigma_y^2+\mu_y),\\ \mathbf{d} x = \sigma_x \exp(\sigma_x u + \rho_{xy}\sigma_x\sigma_y+\sigma_x^2+\mu_x)\mathbf{d}u,\\ \mathbf{d} y = \sigma_y \exp(\sigma_y u + \rho_{xy}\sigma_x\sigma_y+\sigma_y^2+\mu_y)\mathbf{d}u. x=exp(σxu+ρxyσxσy+σx2+μx),y=exp(σyu+ρxyσxσy+σy2+μy),dx=σxexp(σxu+ρxyσxσy+σx2+μx)du,dy=σyexp(σyu+ρxyσxσy+σy2+μy)du.

代入 E ( X Y ) E(XY) E(XY)得(节省空间不写积分上下限了,都是无穷)
E ( X Y ) = 1 2 π 1 − ρ x y 2 ∬ exp ⁡ [ − 1 2 ( 1 − ρ x y 2 ) ( u + ρ x y σ y + σ x ) 2 − 2 ρ x y ( u + ρ x y σ y + σ x ) ( v + ρ x y σ x + σ y ) + ( v + ρ x y σ x + σ y ) 2 + σ x u + σ y v + 2 ρ x y σ x σ y + σ x 2 + σ y 2 + μ x + μ y ] d u d v E(XY) = \frac{1}{2\pi\sqrt{1-\rho_{xy}^2}}\iint \exp\left[ \frac{-1}{2(1-\rho_{xy}^2)} (u+\rho_{xy}\sigma_y+\sigma_x)^2-2\rho_{xy}(u+\rho_{xy}\sigma_y+\sigma_x)(v+\rho_{xy}\sigma_x+\sigma_y)\\ +(v+\rho_{xy}\sigma_x+\sigma_y)^2+\sigma_x u+\sigma_y v+2\rho_{xy}\sigma_x\sigma_y+\sigma_x^2+\sigma_y^2+\mu_x+\mu_y \right]\mathbf{d}u\mathbf{d}v E(XY)=2π1ρxy2 1exp[2(1ρxy2)1(u+ρxyσy+σx)22ρxy(u+ρxyσy+σx)(v+ρxyσx+σy)+(v+ρxyσx+σy)2+σxu+σyv+2ρxyσxσy+σx2+σy2+μx+μy]dudv

化简得到
E ( X Y ) = exp ⁡ ( μ x + μ y + 1 2 ( σ x 2 + 2 ρ x y σ x σ y + σ y 2 ) ) 1 2 π ( 1 − ρ x y 2 ) ∬ exp ⁡ [ − 1 2 ( 1 − ρ x y 2 ) ( u 2 − 2 ρ x y u v + v 2 ) ] d u d v E(XY) =\exp(\mu_x+\mu_y+\frac{1}{2}(\sigma_x^2+2\rho_{xy}\sigma_x\sigma_y+\sigma_y^2)) \frac{1}{2\pi(1-\rho_{xy}^2)}\iint \exp \left[\frac{-1}{2(1-\rho_{xy}^2)}(u^2-2\rho_{xy}uv+v^2)\right]\mathbf{d}u\mathbf{d}v E(XY)=exp(μx+μy+21(σx2+2ρxyσxσy+σy2))2π(1ρxy2)1exp[2(1ρxy2)1(u22ρxyuv+v2)]dudv

指数项右边是一个正态分布概率密度的积分,因此等于1,于是得到了一个很简单的形式
E ( X Y ) = exp ⁡ ( μ x + μ y + 1 2 ( σ x 2 + 2 ρ x y σ x σ y + σ y 2 ) ) E(XY) = \exp(\mu_x+\mu_y+\frac{1}{2}(\sigma_x^2+2\rho_{xy}\sigma_x\sigma_y+\sigma_y^2)) E(XY)=exp(μx+μy+21(σx2+2ρxyσxσy+σy2))

然后我们把 E ( X Y ) E(XY) E(XY) E ( X ) E(X) E(X) E ( Y ) E(Y) E(Y) D ( X ) D(X) D(X) D ( Y ) D(Y) D(Y)代入相关系数公式化简得

ρ = exp ⁡ ( ρ x y σ x σ y ) − 1 ( exp ⁡ ( σ x 2 ) − 1 ) ( exp ⁡ ( σ y 2 ) − 1 ) \rho=\frac{\exp \left(\rho_{xy}\sigma_x\sigma_y \right)-1}{\sqrt{(\exp(\sigma_x^2)-1)(\exp(\sigma_y^2)-1)}} ρ=(exp(σx2)1)(exp(σy2)1) exp(ρxyσxσy)1

但是这个相关系数的结果有个很奇怪的性质,困扰了我一天,那就是当 σ x ≠ σ y \sigma_x\neq \sigma_y σx=σy的时候 ρ \rho ρ取不到 [ − 1 , 1 ] [-1,1] [1,1],我用数字帝国画了个 σ x = 1 , σ y = 2 \sigma_x=1,\sigma_y=2 σx=1σy=2时的草图,长这样:相关系数图像
然后就怀疑我哪里做错了,后来想着还是拿matlab数值计算一下。代码如下:

rho = 0.99;
sigma_x = 2;
sigma_y = 1;
mu_x = 1;
mu_y = 1;
%ff = @(x,y)(exp(-((((log(x)-mu_x).^2./sigma_x.^2)-(2.*rho.*(log(x)-mu_x).*(log(y)-mu_y)./(sigma_x.*sigma_y))+((log(y)-mu_y).^2)./sigma_y.^2)./(2.*(1-rho.^2))))./(2*sigma_x*sigma_y.*pi.*sqrt(1-rho.^2).*x.*y));原始函数
fexy = @(x, y)(exp(-((((log(x)-mu_x).^2./sigma_x.^2)-(2.*rho.*(log(x)-mu_x).*(log(y)-mu_y)./(sigma_x.*sigma_y))+((log(y)-mu_y).^2)./sigma_y.^2)./(2.*(1-rho.^2))))./(2*sigma_x*sigma_y.*pi.*sqrt(1-rho.^2)));
exy = integral2(fexy,0,inf,0,inf,'Method','iterated','AbsTol',0,'RelTol',1e-10);
exey = exp(mu_x+mu_y+sigma_x^2/2+sigma_y^2/2);
corr = (exy-exey)/(exey*sqrt((exp(sigma_x^2)-1)*(exp(sigma_y^2)-1)));

结果是0.6505,和图像相符,也就是说二维对数正态分布的相关系数取值范围确实不总是 [ − 1 , 1 ] [-1,1] [1,1]
再附一个画二维正态和二维对数正态概率分布的代码:

X1=[0.01:0.01:3];
Y1=[0.01:0.01:3];
[x,y]=meshgrid(X1,Y1);
rho = 0.5;
sigma_x = 1;
sigma_y = 1;
mu_x = 1;
mu_y = 1;
BVLN=(exp(-((((log(x)-mu_x).^2./sigma_x.^2)-(2.*rho.*(log(x)-mu_x).*(log(y)-mu_y)./(sigma_x.*sigma_y))+((log(y)-mu_y).^2)./sigma_y.^2)./(2.*(1-rho.^2))))./(2*sigma_x*sigma_y.*pi.*sqrt(1-rho.^2).*x.*y));
BVN=(exp(-((((x-mu_x).^2./sigma_x.^2)-(2.*rho.*(x-mu_x).*(y-mu_y)./(sigma_x.*sigma_y))+((y-mu_y).^2)./sigma_y.^2)./(2.*(1-rho.^2))))./(2*sigma_x*sigma_y.*pi.*sqrt(1-rho.^2)));
subplot(1,2,1);surf(x,y,BVLN);
subplot(1,2,2);surf(x,y,BVN);

画出来是这种感觉:
分布图
断断续续算了四天(主要是开始时不知道如何做变换),算的心态爆炸,给个免费的赞再走吧。

### MATLAB 中生成处理相干对数正态分布杂波 为了在 MATLAB 中生成处理相干对数正态分布杂波,可以采用零记忆非线性变换(ZMNL)方法来实现。具体来说,可以通过以下几个方面完成: #### 1. 参数设定 首先需要设置一些必要的参数,比如均值、方差以及样本数量等。 ```matlab mu = 0; % 对数正态分布的均值 sigma = 1; % 对数正态分布的标准差 N = 1e4; % 样本总数 ``` 这些参数的选择取决于实际应用场景中的统计特征[^1]。 #### 2. 生成独立同分布(IID)高斯噪声 接着利用 `randn` 函数创建一组服从标准正态分布的随机变量作为输入信号源。 ```matlab gaussian_noise = randn(N, 1); ``` 此操作为后续构建所需的对数正态分布提供了基础材料。 #### 3. 应用指数函数转换成对数正态分布 由于对数正态分布是由其自然对数值呈正态分布所定义,因此可以直接对该组 IID 的高斯白噪应用 exp() 运算得到期望的结果。 ```matlab log_normal_data = exp(mu + sigma * gaussian_noise); ``` 这一步骤实现了从高斯分布向目标概率密度形式转变的过程。 #### 4. 添加相位信息形成复数值表示 考虑到题目提到的是“相干”的情况,则还需要引入角度成分构成完整的二维矢量表达方式;这里简单地假设了一个固定的初相角 phi_0 来展示概念上的差异。 ```matlab phi_0 = pi / 4; complex_lognormal_clutter = log_normal_data .* exp(1i * phi_0); % 或者更一般化的方式是让每个时间点都有不同的随机相位: phases = 2*pi*rand(size(log_normal_data)); complex_lognormal_clutter_random_phase = log_normal_data .* exp(1i * phases); ``` 上述代码片段展示了两种不同类型的复杂度增加:固定相移 vs 随机变化。 #### 5. 可视化结果 最后绘制出生成的数据图形以便直观理解。 ```matlab figure(); subplot(2,1,1), plot(real(complex_lognormal_clutter)), title('Real Part'); subplot(2,1,2), plot(imag(complex_lognormal_clutter)), title('Imaginary Part'); figure(), histogram(abs(complex_lognormal_clutter), 'Normalization', 'pdf'), hold on; x = linspace(min(abs(complex_lognormal_clutter)), max(abs(complex_lognormal_clutter)), 1000); plot(x, makedist('LogNormal','mu', mu,'sigma', sigma).pdf(x),'r--') title(['Histogram of Magnitude with Log-Normal Fit (\mu=' num2str(mu) ', \sigma=' num2str(sigma) ')']); xlabel('|z|'); ylabel('Probability Density Function'); legend({'Sample Data', ['Theoretical PDF']}); ``` 这段脚本不仅能够帮助观察合成后的复合型波动形态,而且还能验证所得序列确实遵循预期的概率规律。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值