题目:https://www.luogu.org/problem/P1169
维护三个数组:
lft[i][j]:点[i][j]向左延伸能到达的距离;
rght[i][j]:点[i][j]向右延伸能到达的距离;
up[i][j]:点[i][j]向上延伸能到达的距离。
从而:
s[i][j]=(rght[i][j]-lft[i][j]+1)*up[i][j],表示矩形下底经过点[i][j],且能过到最大高度的矩形的面积。需要强调的是,这个矩形未必是经过点[i][j]的最大面积的矩形——这一点,很多题解没有讲明。
具体细节见代码。
AC代码:
//悬针法DP处理二维矩阵极大化矩形问题
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
const int MaxN=2005;
int n,m,a[MaxN][MaxN],lft[MaxN][MaxN],rght[MaxN][MaxN],up[MaxN][MaxN];
int ans1,ans2;
int main(){
//freopen("in.txt","r",stdin);
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
cin>>a[i][j];
lft[i][j]=rght[i][j]=j;
up[i][j]=1;
}
for(int i=1;i<=n;i++)//初始化left[]
for(int j=2;j<=m;j++)
if(a[i][j]!=a[i][j-1])//向左延伸
lft[i][j]=min(lft[i][j],lft[i][j-1]);
for(int i=1;i<=n;i++)//初始化right[]
for(int j=m-1;j>=1;j--)
if(a[i][j]!=a[i][j+1])//向右延伸
rght[i][j]=max(rght[i][j],rght[i][j+1]);
for(int i=2;i<=n;i++)//阶段
for(int j=1;j<=m;j++){//状态
if(a[i][j]!=a[i-1][j]){//决策
lft[i][j]=max(lft[i][j],lft[i-1][j]);//画图可知,为构成矩形
rght[i][j]=min(rght[i][j],rght[i-1][j]);
up[i][j]=up[i-1][j]+1;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
int x=rght[i][j]-lft[i][j]+1,//长
y=up[i][j];//宽
ans1=max(ans1,min(x,y)*min(x,y));
ans2=max(ans2,x*y);
}
cout<<ans1<<endl<<ans2;
return 0;
}
/*
input:
4 6
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 0 1 0
0 1 0 1 0 1
output:
9
12
*/