luoojP1030最长跳跃路线

本文介绍CF474E简化版的解题思路,通过离散化结合线段树实现nlogn复杂度的最长递增子序列算法。具体步骤包括排序离散化输入,使用线段树维护区间最大值,最终求得最长递增子序列长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CF474E简化版
(cf中此题需要输出答案的方案,此题只需输出答案)

分析

首先想到的是暴力的dp刷表法和填表法都是很简单的,这里不再一一阐述;
不过要做出这题的话首先还是要先学会nlogn的追偿上升子序列;之后这题就会用到这个思路的原理;首先离散化,之后就用线段树或树状数组来维护
附上注释代码

#include<bits/stdc++.h>
#define N 100005
#define LL long long
#define INF 1e18
#define ls l,mid,i<<1
#define rs mid+1,r,i<<1|1
using namespace std;
int t[N<<2];
void update(int p,int v,int l,int r,int i){
    if(l==r){
        t[i]=v;
        return;
    }
    int mid=l+r>>1;
    if(p<=mid)update(p,v,ls);
    else update(p,v,rs);
    t[i]=max(t[i<<1],t[i<<1|1]);
}//线段树跟新将p的值跟新成dp;
int query(int st,int ed,int l,int r,int i){
    if(st<=l&&r<=ed)return t[i];
    int ans=0,mid=l+r>>1;
    if(st<=mid)ans=max(ans,query(st,ed,ls));
    if(ed>mid)ans=max(ans,query(st,ed,rs));
    return ans;
}//查询值(logn)
LL a[N],b[N],k;
int n,dp[N];
int main(){
    scanf("%d%lld",&n,&k);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
        b[i]=a[i];
    }
    sort(b+1,b+1+n);//排序离散化
    b[0]=-INF;b[n+1]=INF;//头尾赋最大最小值
    for(int i=1;i<=n;i++){
        int pos=lower_bound(b,b+2+n,a[i])-b;
        int p1=upper_bound(b,b+2+n,a[i]-k)-b-1;//注意此处要用upper_bound因为>=所以最右的点为大于a[i]-k的第一个数减一
        int p2=lower_bound(b,b+2+n,a[i]+k)-b;//道理和上面差不多
        int res=0;
        if(p1>=1)res=max(res,query(1,p1,1,n,1));
        if(p2<=n)res=max(res,query(p2,n,1,n,1));
        dp[i]=res+1;//dp
        update(pos,dp[i],1,n,1);//跟新
    }
    int ans=0;
    for(int i=1;i<=n;i++)
        ans=max(ans,dp[i]);
    printf("%d\n",ans);
    return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值