【毕业季】致毕业生的一句话:天高任鸟飞,海阔凭鱼跃

本文讲述了一位在校研究生临近毕业的心路历程,分享了从兴趣萌发到深入学习的技术路径,包括多目标优化、智慧教育等,并鼓励在校生珍惜在校时光,提升技能并积极参与实践项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

活动地址:毕业季·进击的技术er

各位小伙伴们大家好,我是小曾哥,今天文章的主题没有技术干货,只有一个在校生的故事。
欢迎大家在评论区说出自己的故事,我先给大家抛个砖,希望能够引出大家的故事!
在这里插入图片描述

又是一年毕业季,作为明年毕业的在校研究生,心里难免有一些期待,同时也更享受在校园的岁月静好。其实围城论用到任何时候都那么贴合而不冲突:作为在校生更想出去工作,早点获得自己的一桶金;作为职场人,在工作的时候,往往最美好的回忆都在校园时期,纵使校园食堂味道总是一言难尽,但是还会想起当年跟你一起在食堂吃饭的那个人;作为毕业生,正是冲破这座围城迎接自己崭新人生的开始!

自我介绍(自报家门)

本人是在校生,在研二末,毕业离我也不曾遥远,365天倒计时也提上日程了;至于方向,相信关注我的小伙伴应该可以根据输出的内容大致已经有所了解了;

对于目前这个CSDN号:“研行笔录 ” 也是开始读研究生的时候开始写的,一直秉持的初衷是希望在读研究生的阶段里,随笔记录自己的所学所感,分享给大家,跟大家一起共勉学习!

主要设计的技术:多目标优化、智慧教育(认知诊断、计算机自适应测评)、主动学习、元学习、强化学习、生成式对抗网络 等,还有一些关于Java学习内容和刷题的记录!
【更新频率不太高,后面我会多更新内容】
在这里插入图片描述
在这里插入图片描述
同时也感谢大家的关注和支持,能够有上面的阅读量,粉丝量,在看到各位都有责任,希望与大家一起进步,砥砺前行!

对于与计算机的历程我更想用几个词来代表几个阶段:相识、相知
虽然看上去像是与恋人必经的几个阶段,但是我与计算机的缘分也就是如此!

相识

在大一本科期间,在机缘巧合下加入了一个校级组织,这个组织的职责是为各个学院维护官网网站和进行一系列网站升级。在这个组织里面,结识了许多志同道合的伙伴,一起攻克困难,进行技术交流会分享自己的经验,一起熬夜分工合作来确保第二天的活动能够顺利的进行,并且自己尝试这开发一些小的APP,在这个组织里完全激发了自己学习编程的兴趣。

同时对我印象比较深刻的是当时带我们的组长说的一句话:天高任鸟飞,海阔凭鱼跃,根据自己的努力不断拓宽自己的宽度和深度,这句话也作为致毕业生的一句话,在今后的广阔天地中不断的发光发热。

因此自己也申请了学校的计算机双学位,从此就与计算机许下了不解之缘!

相知

紧接上文,当我大四毕业了,还想继续在计算机领域进行深耕,也就开始了考研读研之旅,也就有了目前的CSDN的账号,将自己看过的文献加上自己的理解记录下来,这样也可以帮助初入门的同学,也可以一起交流讨论。

作为一名即将为研三的学生而言,想对还在校的同学一点建议:在学校的时间也是转瞬即逝的,还是要珍惜在学校的时间,不断的提升自己的能力(无论哪个方面,因为在学校的试错成本是最低的),同时可以参与一些课题组项目或者一些大赛,可以将理论知识应用在实践中,并进一步提升自己。

活动地址:毕业季·进击的技术er

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据之录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值