【数据挖掘导论】HW2

梯度下降法的多变量线性回归

理论概述

  • 线性回归方程

    单变量线性回归只包含一个变量 x x x,其线性回归方程可表示为 h ( θ ) = θ 0 + θ 1 x 1 h(\theta)=\theta_0+\theta_1x_1 h(θ)=θ0+θ1x1

    当模型包含多个变量时,线性回归方程: h ( θ ) = θ 0 + θ 1 x 1 + ⋯ + θ n x n ​ h(\theta)=\theta_0+\theta_1x_1+\dots+\theta_nx_n​ h(θ)=θ0+θ1x1++θnxn,可假设 x 0 = 1 ​ x_0=1​ x0=1,此时方程可表示成 h ( θ ) = θ 0 x 0 + θ 1 x 1 + ⋯ + θ n x n = ∑ i = 0 i = n θ i x i ​ h(\theta)=\theta_0x_0+\theta_1x_1+\dots+\theta_nx_n=\sum_{i=0}^{i=n} \theta_ix_i​ h(θ)=θ0x0+θ1x1++θnxn=i=0i=nθixi

  • 目标(代价)函数

    • 批量梯度下降(BGD):每一次迭代时使用所有样本来进行梯度的更新

      J ( θ 0 , θ 1 , … , θ n ) = 1 2 m ∑ i = 1 i = m ( h θ ( x ( i ) ) − y ( i ) ) 2 ​ J(\theta_0,\theta_1,\dots,\theta_n)=\frac{1}{2m}\sum_{i=1}^{i=m}(h_\theta(x^{(i)})-y^{(i)})^2​ J(θ0,θ1,,θn)=2m1i=1i=m(hθ(x(i))y(i))2

    1. 目标函数对 θ i \theta_i θi求偏导

      ∂ J ( θ 0 , θ 1 , … , θ n ) ∂ θ j = 1 m ∑ i = 1 i = m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J(\theta_0,\theta_1,\dots,\theta_n)}{\partial\theta_j}=\frac{1}{m}\sum_{i=1}^{i=m}(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} θjJ(

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值