4、简单的神经网络(MLP神经网络分类基础)

本文介绍了人工神经网络的基础,重点讲解了多层感知器(MLP)的概念,包括其在二分类问题中的应用。讨论了MLP的隐藏层选择、激活函数和优化器的选择,并给出了一个简单的二分类代码案例。
摘要由CSDN通过智能技术生成

目录

1、神经网络:(Artifical Neural Network)

2、MLP简介

3、MLP方法

4、MLP简单的二分类代码案例


1、神经网络:(Artifical Neural Network)

全程为人工神经网络,是一种模仿生物神经网络(大脑)的结构和功能的数学模型或计算机模型

生物神经细胞;

神经细胞是构成神经系统的基本单元,称为生物神经元,简称神经元

# 简单神经网络

S型函数,单个神经元。

最简单的神经网络就是逻辑回归

# 二进制是生物学和计算机学的链接

# 神经网络的隐藏层不是越多越好,随着层数增多会达到一个阈值,再增加基本上不变,或者反而会减小。

2、MLP简介

MLP常常被用来做分类,每个输出对应一个不同的二进制分类(比如,垃圾邮件/正正常邮件,紧急/非紧急)

01 每个分类是在互斥的情况下爱,输出层通常被修改成一个共享的soft-max函数。

例如:图片数字的分类

3、MLP方法

sklearn.neural_network.MLPClassifier

MLPClassifier(solver=’sgd’, activation=’relu’,alpha=1e-4,

hidden_layer_sizes=(50,50), random_state=1,max_iter=10,verbose=10,learning_rate_init=.1)

参数说明: 
1. hidden_layer_sizes :例如hidden_layer_sizes=(50, 50),表示有两层隐藏层,第一层隐藏层有50个神经元,第二层也有50个神经元。 
2. activation :激活函数,{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, 默认relu 
- identity:f(x) = x 
- logistic:其实就是sigmod,f(x) = 1 / (1 + exp(-x)). 
- tanh:f(x) = tanh(x). 
- relu:f(x) = max(0, x) 
3. solver: {‘lbfgs’, ‘sgd’, ‘adam’}, 默认adam,用来优化权重 
- lbfgs:quasi-Newton方法的优化器 
- sgd:随机梯度下降 
- adam: Kingma, Diederik, and Jimmy Ba提出的机遇随机梯度的优化器 
注意:默认solver ‘adam’在相对较大的数据集上效果比较好(几千个样本或者更多),对小数据集来说,lbfgs收敛更快效果也更好。 
4. alpha :float,可选的,默认0.0001,正则化项参数 
5. batch_size : int , 可选的,默

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值