-
5 8 Add 0 0 1 Sum 0 0 1 1 Add 1 1 1 Sum 0 0 1 1 Add 2 2 1 Add 3 3 1 Add 4 4 -1 Sum 0 0 4 4
样例输出
-
1 2
3
-
简单的加减法,可是数据操作次序太大了,所以想到了线段树和线段数组,没错这就是一个二维线段数组题
-
然后二维数组的做法这个分析很清楚了
-
《Matrix Sum》题目分析
这是一道非常经典的二维树状数组(Binary Indexed Tree)的题目。树状数组与线段树有着相同的很优秀的时间复杂度(一般是O(logN)完成某些修改、查询操作),同时更容易实现,并且往往复杂度的常数更小。
我们首先来看一下一维数状数组的问题。注意一下对于数状数组的讨论中,数组下标都是从1开始的。
假设我们有一个数组A[1..N]。一维树状数组可以支持对A[]进行如下操作:
1.add(index, val)
: 修改A[index]的值,累加val,也即A[index] += val
2.sum(index)
: 计算A[1] + A[2] + ... A[index]。并且以上两种操作都能在O(logN)之内完成。注意我们能O(logN)求前缀和,意味着也可以O(logN)求区间和:A[i] + A[i+1] + ... + A[j],只需要求sum(j) - sum(i-1)。而我们能对A[index]累加val,意味着实际上我们可以任意修改A[]每一个元素的值。
实际上,一维数状数组就是一个一维数组,我们不妨称之为BIT[1..N],它的每一个元素与A[]有如下对应关系:
BIT[1] = A[1] BIT[2] = A[2] + A[1] BIT[3] = A[3] BIT[4] = A[4] + A[3] + A[2] + A[1] BIT[5] = A[5] BIT[6] = A[6] + A[5] BIT[7] = A[7] BIT[8] = A[8] + A[7] + ... A[2] + A[1]
形象一点讲就是:
0. 如果i是奇数,那么BIT[i] = A[i]
1. 如果i是2的倍数但不是4的倍数,那么BIT[i] = A[i] + A[i-1] (从A[i]开始2个数的和)
2. 如果i是4的倍数但不是8的倍数,那么BIT[i] = A[i] + A[i-1] + A[i-2] + A[i-3] (从A[i]开始4个数的和)
....
k. 如果i是2^k的倍数但不是2^(k+1)的倍数,那么BIT[i] 是 从A[i]开始2^k个数的和。注意!划重点!对于一个整数x,BIT[x]的项数可以用一个非常简洁的函数求得,我们称之为lowbit,lowbit(x) = x & (-x)。其中&是与运算。用代码的表示就是:
int lowbit(int x) { return x & (-x); }
假设我们已经有了BIT[]数组,我们就可以把sum(A[1..index])表示若干个(不超过log(index)个)BIT[]的元素之和:
sum(A[1..7]) = BIT[7] + BIT[6] + BIT[4]
sum(A[1..8]) = BIT[8]
sum(A[1..6]) = BIT[6] + BIT[4]具体方法就是,我们要求sum(A[1..x]),我们先把BIT[x]加进去。我们知道BIT[x]是从A[x]开始的lowbit(x)个元素之和,也就是BIT[x] = A[x] + A[x-1] + ... + A[x - lowbit(x) + 1],那么余下还没加的就是sum(A[1..(x - lowbit(x))]。于是我们再把BIT[x-lowbit(x)]加进去,…… 这样递归的把一个个BIT[i]加进去,直到这些BIT[i]完全覆盖了sum(A[1..x])。
代码如下:
int sum(int x) { int ret = 0; while(x > 0) { ret += BIT[x]); x -= lowbit(x); } return ret; }
最后我们还剩下两个问题,对于给定的A[1..N]如何求出BIT[1..N],以及当进行add(index, val)操作时,如何更新BIT[]数组。
我们不妨设一开始A[]数组每个元素都是0,(这时BIT自然也是全0),对于指定的A[1..N]是经过N个add操作达成的,这样我们就只用解决一个问题:add操作。
当我们改变A[x]的值时,显然对于所有包含A[x]的BIT[i]都需要一起做出修改。例如修改了A[3],那么BIT[3], BIT[4], BIT[8]都要一起修改。如果我们需要修改的BIT元素太多,或者求出哪些元素要修改的复杂度太高,都会影响到add操作的复杂度。
首先我们分析一下哪些BIT的值要修改。我们再回顾一下这个图:
不难发现当我们修改A[x]时,恰好是BIT[x]以及BIT[x]的所有祖先都要修改。
注意!划重点! BIT[x]的父节点是BIT[x + lowbit(x)]。所以add(x, val)用代码表示如下:
void add(x, val) { while(x <= N) { BIT[x] += val; x += lowbit(x); } }
以上我们就搞定了一维树状数组,有没有发现代码都非常短 :D
下面我将一维树状数组扩展到二维。
假设我们有二维数组A[1..N][1..N],二维树状数组可以支持对A[][]进行如下操作:
1.add(x, y, val)
: A[x][y] += val
2.sum(x, y)
: 求和sum(A[1..x][1..y])和一维情况类似,能支持以上两个操作实际就能支持任意修改A[x][y]的值以及求一个子矩阵A[a..b][c..d]的和。
二维树状数组以上两个操作的复杂度都是O(logNlogN)的。
二维树状数组BIT2[x][y]与A[][]的对应关系如下图:
直观理解就是x坐标和y坐标分别是一个一维树状数组,假设一维情况中BIT[x]对应的是A[i1], A[i2] ... A[ik], BIT[y]对应的是A[j1], A[j2], ... A[jt]。那么BIT2[x][y] 相当于笛卡尔积 {i1, i2, ... ik} x {j1, j2, ... jt}:
BIT2][x][y] = ΣA[i][j] | {i in {i1 ... ik}且 j in {j1 ... jt}}
于是add(x, y, val)可以用一个二重循环实现:
void add(int x, int y, int val) { for(int i = x; i <= N; i += lowbit(i)) { for(int j = y; j <= N; j += lowbit(j)) { BIT2[i][j] += val; } } }
sum(x, y)求和也可以用一个二重循环实现:
最后代码int sum(int x, int y) { int ret = 0; for(int i = x; i > 0; i -= lowbit(i)) { for(int j = y; j > 0; j -= lowbit(j)) { ret += BIT2[i][j]; } } return ret; }
#include <iostream> #include<cstdio> #include<algorithm> #include<string> #include<cstring> using namespace std; typedef long long ll; const int maxn=5e+10; const int mm=1011; const ll mod=1e9+7; ll n,m,bitnum[mm][mm]; ll lowbit(ll x) { return x&(-x); } void add(ll x,ll y,ll num) { for(int i=x;i<=n+1;i+=lowbit(i)){ for(int j=y;j<=n+1;j+=lowbit(j)){ bitnum[i][j]+=num; } } } ll sum(ll l,ll r) { ll ans=0; for(int x=l;x>0;x-=lowbit(x)){ for(int y=r;y>0;y-=lowbit(y)){ ans+=(bitnum[x][y])%mod; } }return ans%mod; } ll getsum(ll x1,ll y1,ll x2,ll y2) { ll ans=sum(x2,y2)-sum(x1-1,y2)-sum(x2,y1-1)+sum(x1-1,y1-1); while(ans<0)ans+=mod; return ans; } int main() { memset(bitnum,0,sizeof(bitnum)); cin>>n>>m; for(int i=0;i<m;i++){ char str[10]; ll x1,x2,y1,y2,val; cin>>str; if(str[0]=='A'){ cin>>x1>>y1>>val; add(x1+1,y1+1,val); } else{ cin>>x1>>y1>>x2>>y2; cout<<getsum(x1+1,y1+1,x2+1,y2+1)<<endl; } }return 0; }
描述
You are given an N × N matrix. At the beginning every element is 0. Write a program supporting 2 operations:
1. Add x y value: Add value to the element Axy. (Subscripts starts from 0
2. Sum x1 y1 x2 y1: Return the sum of every element Axy for x1 ≤ x ≤ x2, y1 ≤ y ≤ y2.
输入
The first line contains 2 integers N and M, the size of the matrix and the number of operations.
Each of the following M line contains an operation.
1 ≤ N ≤ 1000, 1 ≤ M ≤ 100000
For each Add operation: 0 ≤ x < N, 0 ≤ y < N, -1000000 ≤ value ≤ 1000000
For each Sum operation: 0 ≤ x1 ≤ x2 < N, 0 ≤ y1 ≤ y2 < N
输出
For each Sum operation output a non-negative number denoting the sum modulo 109+7.