大数据流处理(Spark Streaming + Kafka)面试常考考点

1.ack

Kafka Producer的参数,是把数据写到Kafka broker里面去时需要的参数。常见的值有1、0、all(-1)。

0:leader不做等待,只管发不管结果。延时性最低、持久性最差;

1(默认):只要leader写数据到本地即可,不关注followers。当leader挂掉了可能会有数据丢失。延时性较低、持久性较高;
all(或者-1):leader关注ISR(In-Sync Replicas)中所有的与leader保持同步的副本(followers),得到followers的确认才发送接下来的数据。延时性高、持久性高;

2.Kafka文件存储机制

2.1 基础机制

一个Topic下会有1到N个Partition,一个Partition作为一个目录,每个Partition的名称是Topic名称+有序编号。Partition是实际物理上的概念,而Topic是逻辑上的概念。

编号从0开始,到N-1结束:

  • topic-0
  • topic-1
  • topic-2

每个Partition把大文件拆分成很多大小相等的Segment文件,每个Segment文件又被分为".index"的索引文件与".log"的数据文件。

举例来说,进入topic-0文件夹:

cd topic-0

第一个Segment文件:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值