reduce()函数也是Python内置的一个高阶函数。
reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。
例如,编写一个f函数,接收x和y,返回x和y的和:
|
1
2
|
def
f(x, y):
return
x
+
y
|
调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:
|
1
2
3
4
5
|
先计算头两个元素:f(
1
,
3
),结果为
4
;
再把结果和第
3
个元素计算:f(
4
,
5
),结果为
9
;
再把结果和第
4
个元素计算:f(
9
,
7
),结果为
16
;
再把结果和第
5
个元素计算:f(
16
,
9
),结果为
25
;
由于没有更多的元素了,计算结束,返回结果
25
。
|
上述计算实际上是对 list 的所有元素求和。虽然Python内置了求和函数sum(),但是,利用reduce()求和也很简单。
reduce()还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,计算:
|
1
|
reduce
(f, [
1
,
3
,
5
,
7
,
9
],
100
)
|
结果将变为125,因为第一轮计算是:
计算初始值和第一个元素:f(100, 1),结果为101。
提起map和reduce想必大家并不陌生,Google公司2003年提出了一个名为MapReduce的编程模型[1],用于处理大规模海量数据,并在之后广泛的应用于Google的各项应用中,2006年Apache的Hadoop项目[2]正式将MapReduce纳入到项目中。
好吧,闲话少说,今天要介绍的是Python函数式编程中的另外两个内建函数map()和reduce(),而不是Google的MapReduce。
1.map()
格式:map( func, seq1[, seq2...] )
Python函数式编程中的map()函数是将func作用于seq中的每一个元素,并用一个列表给出返回值。如果func为None,作用同zip()。
当seq只有一个时,将func函数作用于这个seq的每个元素上,得到一个新的seq。下图说明了只有一个seq的时候map()函数是如何工作的(本文图片来源:《Core Python Programming (2nd edition)》)。
可以看出,seq中的每个元素都经过了func函数的作用,得到了func(seq[n])组成的列表。
下面举一个例子进行说明。假设我们想要得到一个列表中数字%3的余数,那么可以写成下面的代码。
这里又和上次的filter()一样,使用了列表解析的方法代替map执行。那么,什么时候是列表解析无法代替map的呢?
原来,当seq多于一个时,map可以并行地对每个seq执行如下图所示的过程:
也就是说每个seq的同一位置的元素在执行过一个多元的func函数之后,得到一个返回值,这些返回值放在一个结果列表中。
下面的例子是求两个列表对应元素的积,可以想象,这是一种可能会经常出现的状况,而如果不是用map的话,就要使用一个for循环,依次对每个位置执行该函数。
上面是返回值是一个值的情况,实际上也可以是一个元组。下面的代码不止实现了乘法,也实现了加法,并把积与和放在一个元组中。
还有就是上面说的func是None的情况,它的目的是将多个列表相同位置的元素归并到一个元组,在现在已经有了专用的函数zip()了。
需要注意的是,不同长度的多个seq是无法执行map函数的,会出现类型错误。
2.reduce()
格式:reduce( func, seq[, init] )
reduce函数即为化简,它是这样一个过程:每次迭代,将上一次的迭代结果(第一次时为init的元素,如没有init则为seq的第一个元素)与下一个元素一同执行一个二元的func函数。在reduce函数中,init是可选的,如果使用,则作为第一次迭代的第一个元素使用。
简单来说,可以用这样一个形象化的式子来说明:
reduce( func, [1, 2,3] ) = func( func(1, 2), 3)
下面是reduce函数的工作过程图:
举个例子来说,阶乘是一个常见的数学方法,Python中并没有给出一个阶乘的内建函数,我们可以使用reduce实现一个阶乘的代码。
那么,如果我们希望得到2倍阶乘的值呢?这就可以用到init这个可选参数了。
|
1
2
3
|
m
=
2
n
=
5
print
reduce
(
lambda
x
,
y
:
x
*
y
,
range
(
1
,
n
+
1
)
,
m
)
# 240
|
本文详细介绍了Python中的高阶函数map和reduce的使用方法。map函数将指定的函数应用于序列中的每个元素,返回新的序列。reduce函数则对序列元素进行累积操作,通过反复调用指定的二元函数来化简序列。



3万+

被折叠的 条评论
为什么被折叠?



