本文主要基于Radim Rehurek的Word2vec Tutorial.
**
准备输入
**
Gensim的word2vec的输入是句子的序列. 每个句子是一个单词列表
代码块
例如:
>>> # import modules & set up logging
>>> import gensim, logging
>>> logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
>>>
>>> sentences = [['first', 'sentence'], ['second', 'sentence']]
>>> # train word2vec on the two sentences
>>> model = gensim.models.Word2Vec(sentences, min_count=1)
将输入视为Python的内置列表很简单, 但是在输入很大时会占用大量的内存. 所以Gensim只要求输入按顺序提供句子, 并不将这些句子存储在内存, 然后Gensim可以加载一个句子, 处理该句子, 然后加载下一个句子.
例如, 如果输入分布在硬盘上的多个文件中, 文件的每一行是一个句子, 那么可以逐个文件, 逐行的处理输入:
>>> class MySentences(object):
... def __init__(self, dirname):
... self.dirname = dirname
...
... def __iter__(self):
... for fname in os.listdir(self.dirname):
... for line in open(os.path.join(self.dirname, fname)):
... yield line.split()
>>>
>>> sentences = MySentences('/some/directory') # a memory-friendly iterator
>>> model = gensim.models.Word2Vec(sentences)
如果需要对文件中的单词做其他处理, 比如转换为unicode, 转换大小写, 删除数字, 抽取命名实体等, 所有这些都可以在MySentence迭代器中进行处理.
注意, word2vec会在整个句子序列上跑两遍, 第一遍会收集单词及其词频来够爱走一个内部字典树结构. 第二遍才会训练神经网络. 如果你只能遍历一边数据, 则可以参考以下做法
>>> model = gensim.models.Word2Vec() # an empty model, no training
>>> model.build_vocab(some_sentences) # can be a non-repeatable, 1-pass generator
>>> model.train(other_sentences) # can be a non-repeatable, 1-pass generator
**
训练
**
Word2vec有很多可以影响训练速度和质量的参数.
第一个参数可以对字典做截断. 少于min_count次数的单词会被丢弃掉, 默认值为5
python
model = Word2Vec(sentences, min_count=10) # default value is 5
另外一个是神经网络的隐藏层的单元数:
model = Word2Vec(sentences, size=200) # default value is 100
大的size需要更多的训练数据, 但是效果会更好. 推荐值为几十到几百.
最后一个主要的参数控制训练的并行:
model = Word2Vec(sentences, workers=4) # default = 1 worker = no parallelization
worker参数只有在安装了Cython后才有效. 没有Cython的话, 只能使用单核.
内存
word2vec的参数被存储为矩阵(Numpy array). array的大小为#vocabulary 乘以 #size大小的浮点数(4 byte)矩阵.
内存中有三个这样的矩阵, 如果你的输入包含100,000个单词, 隐层单元数为200, 则需要的内存大小为100,000 * 200 * 4 * 3 bytes, 约为229MB.
另外还需要一些内存来存储字典树, 但是除非你的单词是特别长的字符串, 大部分内存占用都来自前面说的三个矩阵.
评测
Word2vec的训练是无监督的, 没有可以客观的评测结果的好方法. Google提供的一种评测方式为诸如”A之于B相当于C至于D”之类的任务: 参见http://word2vec.googlecode.com/svn/trunk/questions-words.txt
Gensim也支持相同的评测集:
>>> model.accuracy('/tmp/questions-words.txt')
-02-01 22:14:28,387 : INFO : family: 88.9% (304/342)
-02-01 22:29:24,006 : INFO : gram1-adjective-to-adverb: 32.4% (263/812)
-02-01 22:36:26,528 : INFO : gram2-opposite: 50.3% (191/380)
-02-01 23:00:52,406 : INFO : gram3-comparative: 91.7% (1222/1332)
-02-01 23:13:48,243 : INFO : gram4-superlative: 87.9% (617/702)
-02-01 23:29:52,268 : INFO : gram5-present-participle: 79.4% (691/870)
-02-01 23:57:04,965 : INFO : gram7-past-tense: 67.1% (995/1482)
-02-02 00:15:18,525 : INFO : gram8-plural: 89.6% (889/992)
-02-02 00:28:18,140 : INFO : gram9-plural-verbs: 68.7% (482/702)
-02-02 00:28:18,140 : INFO : total: 74.3% (5654/7614)
切记, 要根据自己的应用了需求来确定算法的性能.
存储和加载模型
存储、加载模型的方法如下:
>>> model.save('/tmp/mymodel')
>>> new_model = gensim.models.Word2Vec.load('/tmp/mymodel')
另外, 可以直接加载由C生成的模型:
model = Word2Vec.load_word2vec_format('/tmp/vectors.txt', binary=False)
# using gzipped/bz2 input works too, no need to unzip:
model=Word2Vec.load_word2vec_format('/tmp/vectors.bin.gz', binary=True)
在线训练
可以在加载模型之后使用另外的句子来进一步训练模型
model = gensim.models.Word2Vec.load('/tmp/mymodel')
model.train(more_sentences)
但是不能对C生成的模型进行再训练.
使用模型
Word2vec支持数种单词相似度任务:
model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
[('queen', 0.50882536)]
model.doesnt_match("breakfast cereal dinner lunch".split())
'cereal'
model.similarity('woman', 'man')
.73723527
可以通过以下方式来得到单词的向量:
model['computer'] # raw NumPy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)