dfs:n皇后2

本文详细介绍了LeetCode中的NQueens II问题的解决方案,利用深度优先搜索(DFS)算法,探讨了如何通过递归和回溯来在8x8的棋盘上放置皇后,避开冲突。通过实例展示了时间复杂度为O(n!)和空间复杂度O(n)的算法实现过程。
摘要由CSDN通过智能技术生成

Leetcode, NQueens2

#include <iostream>
#include <vector>
#include <string>
using namespace std;

int _count;
vector<int> columns;	//已占据了哪些列
vector<int> main_diag;	//已占据主对角线
vector<int> anti_diag;	//已占据副对角线

void dfs(vector<int> &C, int row)
{
	const int N = C.size();
	if (row == N)
	{
		++_count;
		return;
	}
	//扩展状态,一列一列的试
	for (int j = 0; j < N; ++j)
	{
		//main_diag, anti_diag是 2 * n个0的序列,main_diag占据[n, 2n - 1],anti_diag占据[0, n - 1]
		//主对角线上: i - j = 固定值,副对角线上:i + j = 固定值
		const bool ok = columns[j] == 0 && main_diag[row + j] == 0 && anti_diag[row - j + N] == 0;
		if (!ok) continue;

		//执行扩展动作
		C[row] = j;
		columns[j] = main_diag[row + j] = anti_diag[row - j + N] = 1;
		dfs(C, row + 1);
		//撤销动作
		//C[row] = 0
		columns[j] = main_diag[row + j] = anti_diag[row - j + N] = 0;
	}
}
//时间复杂度O(n!),空间复杂度O(n)
int solution(int n)
{
	_count = 0;
	columns = vector<int>(n, 0);
	main_diag = vector<int>(2 * n, 0);
	anti_diag = vector<int>(2 * n, 0);

	vector<int> C(n, 0);	//C[i]表示第i行皇后所在列编号
	dfs(C, 0);
	return _count;
}

int main()
{
	auto res = solution(4);
	cout << res << endl;	//2;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值