20190919——数据预处理 归一化

通过一些转换函数,将特征数据转换成更加适合算法模型的特征数据过程

数值型数据的无量纲化:
归一化
标准化

在这里插入图片描述
为什么我们要进行归一化/标准化

特征的单位或者大小相差较大,或者某特征的方差相比其他特征要大出几个数量级,容易影响支配目标结果,使得一些算法无法学习到的特征。

在这里插入图片描述

我们需要用到一些方法进行无量纲化,使不同规格的数据转换到统一规格

在这里插入图片描述
在这里插入图片描述

from sklearn.preprocessing import MinMaxScaler
import pandas as pd

def minmiax_demo():
    data = pd.read_csv("dating.txt")
    data = data.iloc[:,:3]
    transfer = MinMaxScaler()
    data_new = transfer.fit_transform(data)
    print(data_new)
    return None

if __name__ == "__main__":
    minmiax_demo()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值