通过一些转换函数,将特征数据转换成更加适合算法模型的特征数据过程
数值型数据的无量纲化:
归一化
标准化
为什么我们要进行归一化/标准化
特征的单位或者大小相差较大,或者某特征的方差相比其他特征要大出几个数量级,容易影响支配目标结果,使得一些算法无法学习到的特征。
我们需要用到一些方法进行无量纲化,使不同规格的数据转换到统一规格
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
def minmiax_demo():
data = pd.read_csv("dating.txt")
data = data.iloc[:,:3]
transfer = MinMaxScaler()
data_new = transfer.fit_transform(data)
print(data_new)
return None
if __name__ == "__main__":
minmiax_demo()