题目注意了,给出的是二叉搜索树,左子树小于根节点,右子树大于根节点。
在后序遍历得到的序列中,最后一个数字是树的根节点的值。数组中前面的数字可以分为两部分。第一部分是左子树节点的值,他们都比根节点的值小。第二部分是右子树节点的值,他们都比根节点的值大。
以数组的5.7.6.9.11.10.8为例,后序遍历结构的最后一个数字8就是根节点的值,在这个数组中,前三个数字5.7.6都比8小,是值为8的节点的左子树节点,后三个数字9,11,10都比8大。是值为8的节点的右子树。
我们接下来用同样的方法确定与数组每一部分对应的子树的结构。这其实就是一个递归的过程,对于序列5.7.6,最后一个数字6是左子树根节点的值。数字5比6小,是值为6的左子节点,而7则是它的右子节点。同样,在序列9,11,10中最后一个数字10是右子树的根节点。数字9比10小,是值为10的节点的左子节点,而11是它的右子节点。
我们来分析另一个整数数组,7,4,6,5,后续遍历的最后一个数字是根节点,因此根节点的值为5.由于第一个数字7大于5,因此在对应的二叉搜索树中,根节点上是没有左子树的,数字7.4.6都是右子树节点的值。但我们发现在有右子树中有一个节点的值是4,比根节点的值5小,这违背了二叉搜索的定义,因此不存在一棵二叉搜索树。
package question33_last_tree;
/**
* @Classname Solution
* @Description TODO
* @Date 2020/3/27 16:57
* @Created by mmz
*/
public class Solution {
public boolean VerifySquenceOfBST(int[] arr){
if(arr == null || arr.length <=0){
return false;
}
return VerifySequence(arr,0,arr.length-1);
}
public boolean VerifySequence(int[] arr,int start,int end){
if(start>=end){
return true;
}
int root = arr[end];
int i = 0;
for(;i<end;++i){
if(arr[i]>root){
break;
}
}
int j = i;
for(;j<end;++j){
if(arr[j]<root){
return false;
}
}
return VerifySequence(arr,start,i-1) && VerifySequence(arr,i,end-1);
}
}
看完代码感觉还可以。
package question33_二叉搜索树的后续遍历序列;
/**
* @Classname Main
* @Description TODO
* @Date 2020/4/11 23:39
* @Created by mmz
*/
public class Main {
static boolean Core(int[] arr,int length){
if(arr == null || length<=0){
return false;
}
int root = arr[length-1];
int i = 0;
for(;i<length-1;++i){
if(arr[i] >root){
break;
}
}
int j = i;
for(;j<length-1;++j){
if(arr[j]<root){
return false;
}
}
boolean left = true;
if(i>0){
left = Core(arr,i);
}
boolean right = true;
if(j<length-1){
right = Core(arr,length-i-1);
}
return (left&&right);
}
public static void main(String[] args) {
int[] arr= new int[]{5,7,6,9,11,10,8};
int[] arr1= new int[]{7,4,6,5};
System.out.println(Core(arr, arr.length));
System.out.println(Core(arr1, arr1.length));
}
}
不会忘记了么,
后序遍历,找到第一个大于跟节点的树,如果后面还有大于根节点数,那么这个序列一定不是后序遍历。