这里要讲的邻接链表的构建是在练习ACM中的从常见的存储方式,方便图的存储与构建,并非是数据结构书中的那么复杂,但思想都是相同的。
大家都知道,临界链表的构建有两种,一种是头插法,一种是尾插法。尾插法会更容易理解。所以先讲下较难理解头插法。
头插法
头插法是用结构体数组来实现的。
具体的思路是:在建立邻接表时,记录的不是点而是边,对于每一个点所对应的邻接表都是以栈的形式存储的,也就是说先添加的边在遍历时后取出,除此以外,所有的边用一个结构体数组存储起来,每条边对应的索引就是其编号,在建立邻接表时,表中存放的实质是边的编号,在遍历时先获得编号,在放回结构体数组中获得相应的边的数据。
举例讲解
举例就仅仅讲解一下有向图的无权邻接链表的头插法,至于无向图或者是否有权和这个类似我就不再一一详解。
首先先看下面的一个树,假设每条路的方向都是向下的。
则头插法以后可以得到其头插法的存储形式
我们将其head,e.to,e.next
打印出来,就可以看出来他们之间的存储关系以及变量代表的含义。
- 如果想要找1节点所指向的节点。
- 先找到head[1]的值为编号3,然后查看e[3].to就是他的第一个节点也就是4节点,next的代表下一个的编号也就是2。
- 然后查e[2].to就是他的第二个节点也就是3,同样找到2,当找到-1时表示已经查找完了。
- 查找完以后查看一下上面的存储形式是不是和那个一样,接着自己试试找一下2的节点。
如果不太理解就看代码部分吧
无权值有向图的邻接链表
#include<iostream>
#include<string.h>
#define Size 1000
using namespace std;
struct Edge//边的结构体
{
int to;//边所连接的点
int next;//在栈中的底下一条边的编号
}e[Size << 1];//Size是边的最大数目,当图为无向图时,对一条边的两个端点建立邻接表时,
//均会记录该边,因此,同一条边会被记录两次
int cnt = 0;//用来确定当前边的编号
int head[Size << 1];//Size是点的最大数目,该数组用来存放每一个点在建立邻接表时,栈顶的边的编号
int n, m;
void addEdge(int u, int v)//在u点的邻接表中加入一条边,也就是在栈顶加入一条边
{
e[++ cnt].to = v;
e[cnt].next = head[u];//在u顶点的邻接表这个栈的顶部加入一条边(头插法)
head[u] = cnt;//top为加入边的编号,加入后要更新head,使得head记录邻接表栈顶边的编号
}
/*void bfs()//遍历邻接表
{
for(int i = 1; i <= n; i++)//遍历所有点
{
for(int j = head[i]; j != -1; j = e[j].next)//j=head[i]:获取当前点邻接表的栈顶的边的编号
{ //j=e[j].next:获取栈中底下一条边的编号,j==-1表示遍历完
//操作
}
}
} */
void init()
{
int u, v;
cin >> n >> m;
//初始化
memset(head, -1, sizeof(head));
for(int i = 1; i <= n; i ++)
{
e[i].to = 0;
e[i].next = 0;
}
for(int i =