引入篇
乘法逆元较多用于求解除法取模问题
例如:(a/b)%m时,【a%b=c --> (a*m)%(b*m)=c*m
】【原式*b再/b】可以将其转换为(a%(b×m))/b,但这样求解的过程依然涉及到除法,所以我们应当避免除法的直接计算。这时候就需要用到我们要讲的乘法逆元。
可以使用逆元将除法转换为乘法:假设b存在乘法逆元,即与m互质(充要条件)。
设c是b的逆元,即 b×c≡1(mod m)
那么有 a/b=(a/b)×1=(a/b)×b×c=a×c(mod m)
即除以一个数取模等于乘以这个数的逆元取模
但是在讲乘法逆元之前就必须要引入一个小的知识点:同余式
如果两个正整数a和b之差能被n整除,那么我们就说a和b对模n同余,记作:a≡b (mod n)。
a≡b(mod n)等价于a与b分别用n去除,余数相同。
算法篇
求乘法逆元的算法有好几种,比如:扩展欧几里得、费马小定理、欧拉函数。下面是这几种算法适用的情况:
- 逆元求解一般利用扩欧。
- 当m为质数的时候直接使用费马小定理
- m非质数使用欧拉函数。
扩展欧几里得算法
要求a,n互为素数,