乘法逆元数论篇【ORZ式教学】

乘法逆元在解决除法取模问题时起到关键作用,通过转换将除法变为乘法,避免直接计算除法。本文介绍了乘法逆元的概念,并详细讲解了扩展欧几里得算法、费马小定理和欧拉函数在求解乘法逆元时的应用。同时,阐述了同余式的概念。提供了适用于不同情况的逆元求解算法,并附带了相关代码实现。
摘要由CSDN通过智能技术生成

引入篇

乘法逆元较多用于求解除法取模问题
例如:(a/b)%m时,【a%b=c --> (a*m)%(b*m)=c*m】【原式*b再/b】可以将其转换为(a%(b×m))/b,但这样求解的过程依然涉及到除法,所以我们应当避免除法的直接计算。这时候就需要用到我们要讲的乘法逆元。
可以使用逆元将除法转换为乘法:假设b存在乘法逆元,即与m互质(充要条件)。

设c是b的逆元,即 b×c≡1(mod m)
那么有 a/b=(a/b)×1=(a/b)×b×c=a×c(mod m)
即除以一个数取模等于乘以这个数的逆元取模

但是在讲乘法逆元之前就必须要引入一个小的知识点:同余式

如果两个正整数a和b之差能被n整除,那么我们就说a和b对模n同余,记作:a≡b (mod n)。
a≡b(mod n)等价于a与b分别用n去除,余数相同。

算法篇

求乘法逆元的算法有好几种,比如:扩展欧几里得、费马小定理、欧拉函数。下面是这几种算法适用的情况:

  • 逆元求解一般利用扩欧。
  • 当m为质数的时候直接使用费马小定理
  • m非质数使用欧拉函数。

扩展欧几里得算法

要求a,n互为素数,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值