一、App性能问题
界面反应慢
界面卡顿甚至无响应
使用过程中程序闪退
高峰时期程序报错
请求超时
二、App性能测试
1、面临的问题
性能指标不明确
模拟场景与真实场景之间的差异性
模拟组网与真实组网之间的差异性
模拟数据与真实数据之间的差异性
测试过程中的执行模型问题
测试执行过程中的资源监控问题
性能测试结果与系统瓶颈分析
影响:性能测试结果与真实存在很大差距,测试结果不准确
2、业务解决方案
1、分析用户使用场景,掌握用户需求
2、提炼用户关注度较强的功能
3、分析用户操作频繁的功能
4、分析系统中可能的大数据量操作【文件读写,图片浏览,事务队列,事务机制】
5、分析系统关键功能【后台服务,缓存,调用的功能组件】
6、分析用户组合环境,操作比例以及操作时延
3、组网模型【服务器的网络组成】
组网类型:单机,双机,单机集群,双机集群,各种组合类型
部件:服务,数据库,文件库,第三方组件
消息交互:同步,异步
物理资源配置信息:
手机端:机型,cpu,内存,操作系统类型
服务端:cpu,内存,磁盘读写,网卡,操作系统类型
4、组网解决方案
1、组网选型:
当前系统需要满足哪些组网
分析各个组网之间差异,低/中/高
选定需要测试的性能组网
测试组网与生产组网一致
2、问题
物理资源难以解决
3、解决方案
申请/购买所需物理资源
不能满足情况下,需要评估测试组网与生产组网差异,至少满足最低配置要求
满足主流机型
5、数据模型
数据分类:
--系统初始数据:
-分析系统上线后数据量/历史数据
-计算出系统每个阶段数据容量,数据类型,数据比例
-根据不同阶段分别进行数据预制
--测试新增数据:
-业务场景确定后根据具体业务场景定义输入和输出数据
-结合具体的呼叫模型进行数据预制
6、执行模型
1、性能测试
压力测试-》负载测试-》性能测试
2、App客户端执行模型
模拟用户行为,测试各类操作的响应时间,包括部署和功能等 方面
模拟用户反复对App进行操作
3、App服务端执行模型
在物理资源足够的情况下,对系统慢慢加压直至吞吐量不变,得出系统最适性能指标。
在性能指标基础上对系统继续加压,直至系统出现消息失败
在物理资源不足的情况下,一方面优化系统软件,一方面增加物理资源内存
4、App性能测试--环境因素
app端:网络,系统资源状态,内部进程
服务端:网络,王元内部,外部网元
5、App性能测试--执行工具
app客户端:monkey,instrument,DDMS/MAT
app服务端:loadrunner,jmeter
6、App性能测试--监控模型
app客户端:指标
响应时间,流畅度,cpu,内存,电量,流量
app服务端:指标
消息时延,cpu,内存,网络,磁盘,数据库,文件句柄
并发量影响的响应时间要变化,而指标在测试环境不改变情况下不改变
7、App性能测试--监控工具
app客户端:iTest,Emmagee,instrument,System monitor
app服务端:nmon,工具自带monitor,其他