Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
2
4 5 2
6 4 3
Sample Output
3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。
参照别人提供的莫比乌斯函数的一个性质
∑d|nμ(d)=[n==1]
在这一题中,我们需要利用这一个性质。
如果不经变换,这题要求的东西就是
∑i=1a∑j=1b[gcd(i,j)==1]
我们先令
a′=⌊a/d⌋,b′=⌊b/d⌋
然后将原式转为
∑i=1a′∑j=1b′[gcd(i,j)==1]
再用前面提到的性质将式子再变换一下
∑i=1a′∑j=1b′∑d|gcd(i,j)μ(d)
因为
d|gcd(i,j)⇔(d|i & d|j)
然后结果就可以用一个简单的式子表示出来了
∑i=1min(a′,b′)μ(i)⌊a′/i⌋⌊b′/i⌋
其中会有一大段μ(i)要加的数量一致,用前缀和直接一起搞定
上述一切思想都是别人的智慧结晶,我只是一个搬运工,打完可以去水2301,双倍经验
#include <cstdio>
using namespace std;
inline char tc(void)
{
static char fl[10000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,10000,stdin),A==B)?EOF:*A++;
}
inline int read(void)
{
int a=0;static char c;
while((c=tc())<'0'||c>'9');
while(c>='0'&&c<='9')
a=a*10+c-'0',c=tc();
return a;
}
inline void swap(int &a,int &b)
{
int t=a;a=b,b=t;return ;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline int max(int a,int b)
{
return a>b?a:b;
}
int n,cnt,mu[50001],sum[50001],p[50001],ans,pos;
char b[50001];
inline void prepare(void)
{
mu[1]=1;
for (int i=2;i<=50000;++i)
{
if(!b[i])
p[++cnt]=i,mu[i]=-1;
for (int j=1;j<=cnt&&p[j]*i<=50000;++j)
{
b[i*p[j]]=1;
if(i%p[j]==0)
{
mu[i*p[j]]=0;
break;
}
else
mu[i*p[j]]=-mu[i];
}
}
for(int i=1;i<=50000;i++)
sum[i]=sum[i-1]+mu[i];
return ;
}
int cal(int n,int m)
{
if(n>m)swap(n,m);
ans=0;
for(int i=1;i<=n;i=pos+1)
{
pos=min(n/(n/i),m/(m/i));
ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
}
return ans;
}
int main(void)
{
register int i,a,b,c;
prepare(),n=read();
while(n--)
a=read(),b=read(),c=read(),printf("%d\n",cal(a/c,b/c));
return 0;
}