NYOJ 737 石子合并(一)【区间DP】

NYOJ 737.

描述
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239

分析:
贪心是局部最优,可处理不连续的堆合并,相当于哈夫曼树结构(本题前后有影响,需要DP解)。
按照序列的长度划分,枚举长度 2>n 2 − > n ,相当于把每一段层层递推,暴力起点,枚举长度能够得到终点,枚举起点和终点的每一个点,把这个点当作分段点。你枚举每一段的时候,其实之前一些短的段已经存在了,直接用即可,每次保留最小值.

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;

const int INF = 0x3f3f3f3f;
int dp[210][210], a[210], sum[210];

int main() {
    int n;
    while(scanf("%d", &n) != EOF) {
        memset(dp, 0, sizeof(dp));
        memset(sum, 0, sizeof(sum));
        for(int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            sum[i] += sum[i - 1] + a[i];
        }
        for(int len = 2; len <= n; len++) {
            for(int i = 1; i <= n - len + 1; i++) {
                int j = i + len - 1;
                dp[i][j] = INF;
                for(int k = i; k < j; k++) {
                    dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);
                }
            }
        }
        printf("%d\n", dp[1][n]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值