DECAPS

本文提出了一种名为DECAPS的新网络结构,它结合了 Capsule Networks 的优势与细节导向的机制。DECAPS能全局提取图像信息并生成显著特征图,再通过蒸馏机制融合全局信息与细粒度特征进行预测。实验表明,这种方法提高了模型的鲁棒性和性能。
摘要由CSDN通过智能技术生成

1、摘要阅读

  1. IDR
  2. Peekaboo training procedure  and a  second-layer attention scheme
  3. the distillation proces(improve the robustness)
  4. CheXpert(classification) and RSNA Pneumonia(detection)

2、Methodology

2.1.Detail-Oriented Capsule Network

 

2.2.Dynamic  vs  IDR

不同:                             自上而下                        vs                        自下而上

 

1)IDR促使低层的胶囊去争夺高层的胶囊的注意;Dynamic促使高层的胶囊去获取低层胶囊的投票。

 

 

 

 

2.3.Loss

 

 

2.3Peekaboo

 

2.4.distillation

 

3、Experiments and Results

 

4、Conclusions

  1. 提出了一种新的网络结构,DECAPS,将CapsNets的长处与面向细节的机制结合;
  2. DECAPS被应用到整个图像去提取全局的信息,生成显著特征图。类似于外科大夫通过扫描整张图像去获取一个整体的信息。然后在关注的信息区域里从感兴趣提取出细粒度的特征;
  3. 利用蒸馏机制将全局信息和细粒度特征结合起来去预测。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值