Tensorflow学习笔记-1

#encoding:utf-8
import tensorflow as tf
import numpy as np

#定义随机数和函数关系
x0=np.random.rand(100).astype(np.float32)
y0=x0*0.1+0.3

#搭建模型
w=tf.Variable(tf.random_uniform([1],-1,1))
biases=tf.Variable(tf.zeros([1]))
y=w*x0+biases

#计算损失
loss=tf.reduce_mean(tf.square(y-y0))

#传播误差
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)

#初始化所有定义的Variable
init=tf.global_variables_initializer()

#创建会话
sess=tf.Session()
sess.run(init)

for step in range(200):
    sess.run(train)
    if step%20==0:
        print(step,sess.run(w),sess.run(biases))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值