在数学建模中,获得大量数据集是至关重要的,因为这些数据可以帮助你验证模型的有效性,并使模型更加精确。本文从简单通用的数据集、大型数据集、预测建模与机器学习数据集、图像分类数据集、文本分类数据集、推荐引擎数据集、数据集网站等介绍数据集。该方式适用与复杂网络、图像识别、机器学习、数学建模等领域所需的数据。
一些获取大量数据集的方法:
-
公开数据集平台:互联网上有许多提供公开数据集的平台,如UCI机器学习库(
在数学建模中,获得大量数据集是至关重要的,因为这些数据可以帮助你验证模型的有效性,并使模型更加精确。本文从简单通用的数据集、大型数据集、预测建模与机器学习数据集、图像分类数据集、文本分类数据集、推荐引擎数据集、数据集网站等介绍数据集。该方式适用与复杂网络、图像识别、机器学习、数学建模等领域所需的数据。
一些获取大量数据集的方法:
公开数据集平台:互联网上有许多提供公开数据集的平台,如UCI机器学习库(