数学建模——灰色预测模型及matlab代码实现

数学建模 专栏收录该内容
15 篇文章 517 订阅 ¥29.90 ¥99.00

灰色预测的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(Grey Model,简称GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的方法。

优点是不需要很多的数据,一般只需要4个数据就够。缺点是只适合于中短期的预测,只适合指数增长的预测。

GM(1,1)预测模型1阶微分方程,只含1个变量

GM(1,1)模型预测步骤
1.数据的检验与处理
2.建立模型
3.检验预测值
(1)残差检验
(2)级比偏差检验
4.预测数据

灰色预测模型使用条件:

1.已知数据[x,y]的组合大于4组,小于10组。(已知的样本数据过小或过大可选择其他的方法预测)

2.在实际应用中,数据通常是以年份度量的非负数据(如果是月份或季度数据可用时间序列模型)

3.数据能经过准指数规律的检验(除了前两期外,后面至少90%的期数的光滑比要低于0.5&#x

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页

打赏作者

三月的一天

你的鼓励将是我前进的动力。

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值