2020考研数学一大纲之完全解析(一)

本节大纲内容

	在本节只是把大纲做一个详解,重点在于对理论的理解。
	最后补充了一些解题思想和题型说明。
	后续,我会再针对每一节大纲出一系列题型分析,帮助大家进行解题实战。
	请牢记,高数并没有那么难,难的是你没有坚持探索。
	坚持探索,数学的魅力是无穷的。
	祝各路朋友获得真知、成功上岸。

考试要求

  1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
  2. 了解函数的有界性、单调性、周期性和奇偶性.
  3. 理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
  4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.
  5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
  6. 掌握极限的性质及四则运算法则.
  7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
  8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
  9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
  10. 了解连续函数的性质和初等函数的连续性.
  11. 理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

考试内容

  • 函数的概念及其表示法

     深层解析:
     函数是为了描述、分析变化的事物而产生的数学方法。
     核心在于变化,事物之间是存在某种联系的。
     往往是一种事物的变化而引起另一种事物的变化,当然也可以推广到多种事物。
     把这些纳入数学的范畴就产生了函数。
     有一个自变量x,取值范围为D。x在D中随便拿出一个值,都能在某种关系的限定下映射到另一个唯一确定的值y。可以说y的变化是由x引起的,则y是x的函数。
     定义域、值域什么的就不需要解释了。
     由此可以继续探索多元函数,核心思想是:多种事物的变化引起另外多种事物的变化。在数学中,往往写
     成多种事物的变化引起某一种事物的变化。
     其实,多元和一元本质上没有太大区别,如果把多元函数的元分写在等式的两边,把两边的元分别统一为某个变量X和Y,那么多元也就转化为了一元。
     函数魅力无穷,世界万物的变化都可以用函数来解析,只不过现阶段人类智慧有限,而无法找到对应的函数而已。理论上,函数可以表示任何变化的事物之间的联系。
     函数的表示法:
     解析法,列出函数式,y=f(x)。
     列表法,列出自变量的取值与因变量的对应值,以表格形式呈现。
     图像法,在坐标系中画出函数图像。
     语言叙述法,用文字描述函数。
    
  • 函数的有界性

函数有界性

   此时注意绝对值的作用,表示函数既要有上界又要有下界。

有界性注解

	此时注意函数的上界和下界并非是绝对值相等的。
  • 函数的单调性

函数单调性

 	此时应注意理解:单调性是有区间限制的,离开了区间无法谈函数单调性。
 	区间B、C是定义域D的子集,在B内函数单增,在C内函数单减,但是在D内函数不单调。
 
 	注意理解函数单调的含义,如果函数单调,那么在函数的定义域内不存在转折点。
  • 函数的奇偶性

函数奇偶性

	此时注意奇偶性可能成立的前提条件:定义域D关于原点对称。离开了这个前提条件奇偶性就有可能不
	成立,在这里说有可能不成立是有原因的。
	试想一下,如果定义域是(-∞,+∞),那么此定义域是否关于原点对称呢?这就要分情况了,如果某个
	特殊函数在无穷大处收敛时,可认为此定义域是对称的,反之可以认为此定义域不对称。
	在后面小节中,反常(广义)积分会有详细说明。
	到此,可以知道只有在前提条件满足的情况下才可以往下谈奇偶性。
	事物的变化有很多种情况,恰好某一种情况在原点两边互为相反,有人给它起名为奇。
	统一到数学的范畴,就有了奇函数。同理,恰好有发生了另一种特殊情况,就有了偶函数。
  • 函数的周期性

函数周期性

	此时注意函数周期大于0。当然说周期为负理论上也是对的,但是负的情况可以归结到正,所以在此规定周期统一为正。
	周期也是事物变化的一种特殊情况,一种周而复始的特殊情况。
  • 复合函数

复合函数

	顾名思义,复合函数就是值多个函数复合到一起变成一个更加复杂的函数,这里的复合不是指函数之间的加减乘除。
	函数的加减乘除是函数的运算,并不是复合。
	简单来说,复合函数是指某个函数的自变量恰好又是另一种函数的因变量。理论上可以永无止境的复合下去。
	也可以把复合函数推广到多元函数,多元函数的自变量中**至少有一个**是另一种函数的因变量。
  • 反函数

反函数

	此时注意反函数不能简单的理解为,自变量和因变量地位的互换。因理解为在特殊情况下,自变量可以和因变量互换形成另一种形式的函数。
	注意这里的特殊情况是指:
	1、原函数为单调函数,单调函数的理解前面已经讲过,必须注意单调函数的含义。
	2、自变量x与因变量y必须互为唯一映射。
	满足这两种特殊情况的函数才有资格具有反函数。
  • 分段函数

     顾名思义,分段函数是在相对情况下产生的。相对于一般的函数,分段函数具有不值一种对应关系。
     即分段函数在其定义域的子集中分别呈现不同的对应关系。也就是说分段函数的对应关系不止一种。
     此时注意,分段函数不能简单的理解为函数间断而形成了分段函数。有些分段函数虽然不可导,但依旧连续。
     这里提醒一下:函数可导一定连续,但连续不一定可导。
     间断的函数属于分段函数,间断函数是分段函数的子集。间断函数一定不连续,而分段函数既有连续又有不连续。
    
  • 隐函数

     隐函数是相对于普通的显式函数而说的。显式函数明确给出了函数的对应关系,而隐函数只告诉你可以通过某一个方程确定一种函数关系,但对应关系是什么却不告诉你。
     F(x,y)=0 是一个方程。此方程可以确定一个函数关系,但怎样确定的并没有说,此时它就是一个隐函数。
     隐函数具有相对意义。
    
  • 基本初等函数的性质及其图像

基本初等函数
初等函数

	此时注意,基本初等函数的意义重大,必须牢记其性质和图像。要知道,几乎所有的函数都会由这些基本初等函数演变而来。之所以说几乎所以,是因为世界如此奇妙,怎么可能没有一两个特例呢。

	在这里探讨一下哲学。若君甚感不悦,或龙颜大怒,即可跳过。
	
	世间万物各种各样,似乎毫无规律可言。但请试想一下,万物中会不会有特殊的情况被世人所熟悉呢?
	当然有了,那么再请试想一下,万物会不会是由这些特殊的情况或组合或复合或运算而成的呢?
	我认为答案是肯定的。由一般可以得出特殊,也可以由特殊衍生出一般。

诱导公式1
诱导公式2
诱导公式3
诱导公式4

	以上诱导公式一定要牢记,对于化简、代换、计算等至关重要,一旦记错,满盘皆输。
	基本初等函数的图像要熟悉,另外更重要的是基本初等函数的性质。
  • 初等函数关系的建立

    这里主要是在一些应用题中出现,根据应用描述去建立合适的函数关系。
    
  • 数列极限与函数极限的定义及其性质

极限的定义

	此时注意数列极限和函数极限的区别:
	数列的极限在于研究数列的第n项,当n为无穷大,即数列的第无穷大项是否趋于一个特定的值。
	而函数的极限在于研究自变量的取值。注意绝对值的含义。
	另外注意当自变量趋于某一个值理解为在某一个值的邻域内,而并不等于这个值。
	函数在一点处的极限与在该点处有无定义无关。
  • 函数的左极限和右极限

    左右极限

     只有当函数的自变量趋于某一个特定的值时,才可以说有左极限和右极限。
     当自变量趋于某一个值的左邻域时,得到的函数极限为左极限,反之得到右极限。
     自变量趋于某个值有极限时,当且仅当在这个值的邻域内存在左右极限并相等。
     考虑左右极限的情况:
     1、分段函数在分界点处。
     2、当自变量趋于左右邻域而出现正负时。
    
  • 无穷小量和无穷大量的概念及其关系

无穷小

无穷大

	无穷小可以认为是一个无限趋近于零的数,在一般情况下可以认为无穷小和零等价。
	无穷大表示一个很大的数字,大是无上限的,可以认为无穷大只是一个对数值很大的描述。
	实际上,无穷大并不存在。 
  • 无穷小量的性质及无穷小量的比较

无穷小的性质
无穷小比较

	高阶无穷小收敛于0的速度更快。

无穷小的性质2

  • 极限的性质及四则运算

    1、唯一性,极限存在必唯一。
    2、保号性。
    极限保号性
    3、有界性。
    极限有界性
    4、列与子列极限性质
    列与子列极限性质
    5、极限的运算性质

极限运算性质

  • 极限存在的两个准则:单调有界准则和夹逼准则

    1、迫敛定理
    迫敛定理
    2、单调有界准则

单调有界准则

	注意数列有界的充要条件是数列有上界和下界。
  • 两个重要极限

重要极限1
重要极限2
注解

	在极限运算中两个重要极限及其重要。很多运算的形式都是由它们演变而来。
  • 函数连续的概念

函数连续概念
注解

	函数连续可以反理解为函数不间断。 函数要想间断,首先此函数是一个分段函数,只有分段函数才有资格间断。
	那么问题就转化为研究分段函数在分界点处是否间断,不间断就是连续。
  • 函数间断点的类型

间断点分类

	此时应注意函数极限为无穷就是极限不存在。

闭区间连续函数性质

补充环节

理论虽好,但要注重实践,只有在大量的实践过程中才能体会理论的魅力。对理论的最好的理解方法就是实践运用。
  • 特殊函数

符号函数

狄利克雷函数

在这里插入图片描述

  • 麦克劳林

麦克劳林

	极限计算中往往会遇到难以化简和难以用洛必达法则的情况,那么就要考虑用麦克劳林。
	一般情况无穷小是不能进行加减运算的,但是当精确度相同的时候可以进行加减运算。
	而麦克劳林可以将不同的趋于无穷小的函数的精确度化为一致。
	那么,在精确度相同的情况下就可以进行加减运算。
  • 极限计算的几个思想

    这些思想看似繁杂,实际计算中都在用,有时候难以解题时,回头思考解题思想就会豁然开朗。
    

    1、极限型化为比值型,变为0/0型、∞/∞型,便于利用洛必达法则。
    2、见到幂指函数一般转化为对数函数。
    3、等价无穷小代换。
    4、换元思想。
    5、洛必达法则。注意洛必达法则可能不适用的情况。
    6、三角函数恒等变换,用来化简。
    7、等价无穷小在同精确度下可以进行加减。
    8、两个重要极限。
    9、局部极限值为常数时可以优先计算。
    10、麦克劳林公式,用来转化无穷小的精确度。
    11、去绝对值时应注意左右极限的情况。
    12、含有定积分时,注意定积分的性质,多做练习。
    13、配平方和进行化简。
    14、迫敛定理。
    15、不等式变换,在使用迫敛定理时会用到。
    16、数列单调有界准则。

  • 题型说明

     本节主要题型为极限的计算,只要熟练了以上知识再加上做题训练,极限计算一般没什么问题。
     另外要注意可能的极限存在性问题,可能会有用极限定义证明极限存在。了解即可。
     如果难度大的话,还应注意极限与中值定理的结合,还有极限与定积分、数列的结合。
    
  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值