opencv学习——cv2.findHomography()

#第三个参数用于计算单应矩阵的方法。 可以使用以下方法:
         #0  - 使用所有点的常规方法
         #CV_RANSAC  - 基于RANSAC的鲁棒方法
         #CV_LMEDS  - 最少中位数的鲁棒方法
         #第四个参数取值范围在1到10,绝一个点对的阈值。原图像的点经过变换后点与目标图像上对应点的误差
         #超过误差就认为是异常值
         #返回值中H为变换矩阵.mask是掩模,在线的点
         H,mask = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)

我们之前使用了查询图像,找到其中的一些特征点,我们取另外一个训练图像,找到里面的特征,我们找到它们中间最匹配的。简单说就是我们在一组图像里找一个目标的某个部分的位置。

我们可以使用一个calib3d模块里的函数,cv2.findHomography().如果我们传了两个图像里的点集合,它会找到那个目标的透视转换。然后我们可以使用cv2.perspectiveTransform()来找目标,它需要至少4个正确的点来找变换。

我们看过可能会有一些匹配是的错误而影响结果。哟啊解决这个问题,算法使用了RANSAC或者LEAST_MEDIAN(由标志决定)。提供正确估计的好的匹配被叫做inliers,而其他的叫做outliers。cv2.findHomography()返回一个掩图来指定inlier和outlier。

code

首先,和正常一样,我们找到SIFT特征,用比率检测来找最匹配的。

import numpy as np
import cv2
from matplotlib import pyplot as plt

MIN_MATCH_COUNT = 10

img1 = cv2.imread('box.png',0)          # queryImage
img2 = cv2.imread('box_in_scene.png',0) # trainImage

# Initiate SIFT detector
sift = cv2.SIFT()

# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)

flann = cv2.FlannBasedMatcher(index_params, search_params)

matches = flann.knnMatch(des1,des2,k=2)

# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
    if m.distance < 0.7*n.distance:
        good.append(m)

现在我们设置一个至少10个匹配的条件(有MIN_MATCH_COUNT指定)来找目标。否则就显示一个信息说没有足够的匹配。

如果找到了足够的匹配,我们得到两张图像里标记的关键点的位置。他们被传到透视转换。当我们得到了3x3的转换矩阵,我们用它来把查询图像里的角转换到响应的训练图像的对应点。然后画出来。

if len(good)>MIN_MATCH_COUNT:
    src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
    dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
   
    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
    matchesMask = mask.ravel().tolist()

    h,w = img1.shape
    pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
    dst = cv2.perspectiveTransform(pts,M)

    img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)

else:
    print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
    matchesMask = None

最后我们画出我们的inliers(如果成功找到了目标)或者匹配关键点(如果失败了)

draw_params = dict(matchColor = (0,255,0), # draw matches in green color
        singlePointColor = None,
        matchesMask = matchesMask, # draw only inliers
        flags = 2)

img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)

plt.imshow(img3, 'gray'),plt.show()

看下面的结果,目标被白色标出来

END



作者:xxxss
链接:https://www.jianshu.com/p/d835f1a4717c
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

### 计算机视觉课程设计使用 OpenCV 实现 #### 选择合适的主题 对于计算机视觉课程设计而言,选择一个既有趣又具有挑战性的课题至关重要。考虑到OpenCV的强大功能及其广泛应用范围[^1],可以选择诸如图像处理基础、特征提取与匹配、目标检测以及视频分析等领域作为研究方向。 #### 图像处理基础案例——灰度化转换 为了帮助理解基本概念并熟悉工具链操作,在此提供一段简单的Python代码片段用于将彩色图片转化为灰色调: ```python import cv2 def convert_to_grayscale(image_path): img = cv2.imread(image_path) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return gray_img if __name__ == "__main__": grayscale_image = convert_to_grayscale('example.jpg') cv2.imshow('Grayscale Image', grayscale_image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段程序读取指定路径下的JPEG文件,并将其颜色空间由BGR转为GrayScale模式显示出来。 #### 特征点检测实例——SIFT算法应用 当涉及到更复杂的任务比如对象识别时,则可能需要用到一些特定的技术手段来增强系统的鲁棒性和准确性。下面给出了一种基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)的方法来进行两幅不同视角下同一物体之间的对应关系查找: ```python import numpy as np import cv2 sift = cv2.SIFT_create() img1 = cv2.imread('object_1.png') # 查询图像 gray1= cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) kp1, des1 = sift.detectAndCompute(gray1,None) FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1,kp2=kps_train,k=2) good_matches = [] for m,n in matches: if m.distance < 0.7*n.distance: good_matches.append(m) MIN_MATCH_COUNT = 10 if len(good_matches)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good_matches ]).reshape(-1,1,2) dst_pts = np.float32([ kps_train[m.trainIdx].pt for m in good_matches ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) else: print ("Not enough matches are found - %d/%d" % (len(good_matches),MIN_MATCH_COUNT)) ``` 上述脚本利用了SIFT描述子计算两张照片间的相似之处,并通过RANSAC算法估计两者间最佳单应矩阵从而实现配准效果. #### 面部表情分类实践—深度学习模型集成 随着近年来人工智能技术的发展进步,越来越多的研究人员倾向于采用卷积神经网络(Convolutional Neural Networks,CNNs)解决实际问题。这里介绍如何借助预训练好的VGGFace模型快速搭建一个人脸情绪预测器: ```python from keras.preprocessing import image from keras_vggface.vggface import VGGFace from keras_vggface.utils import preprocess_input import numpy as np model = VGGFace(model='vgg16') def predict_emotion(face_image): face_image = cv2.resize(face_image,(224, 224)) x = image.img_to_array(face_image) x = np.expand_dims(x,axis=0) x = preprocess_input(x,version=1) preds = model.predict(x) emotion_labels=['Angry','Disgust','Fear','Happy','Sad','Surprise','Neutral'] predicted_label=np.argmax(preds[0]) confidence=preds[0][predicted_label]*100 result={ 'Emotion':emotion_labels[predicted_label], 'Confidence':'%.2f%%'%confidence} return result ``` 该段落说明了怎样加载预先训练过的权重参数并对输入的人脸ROI区域做出情感倾向评估.
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值