cv2.findHomography()函数介绍:
cv2.findHomography() 是 OpenCV 中的一个函数,用于找到两个图像之间的单应性矩阵(Homography matrix)。在计算机视觉中,单应性矩阵是一个3x3的矩阵,它描述了两个平面之间的相对位置关系,通常用于图像配准、图像拼接、全景图像生成等应用中。
## findHomography(srcPoints,dstPoints, method=None, ransacReprojThreshold=None, mask=NO
#计算视角变换矩阵,透视变换函数,与cv2.getPerspectiveTransform()的区别在与可多个数据点变换
#参数srcPoints:图片B的匹配点坐标
#参数dstPoints:图片A3的匹配点坐标
# 参数method:计算变换矩阵的方法。
# 0- 使用所有的点,最小二乘
# RANSAC-基于随机样本一致性,见https://zhuanlan.zhihu.com/p/402727549
# LMEDS - 最小中值
# RHO-基于渐近样本一致性
# ransacReprojThreshold:最大允许重投影错误阈值。该参数只有在method参数为RANSAC与RHO的时启用,默认
# #返回值:中H为变换矩阵,mask是掩模标志
函数原型
cv2.findHomography(srcPoints, dstPoints, method=cv2.RANSAC, ransacReprojThreshold=3, mask=None, maxIters=2000, confidence=0.995)
参数说明
- srcPoints:源图像中的点集,类型为np.float32的N x 1 x 2或者N x 2数组(其中N是点的数量)。
- dstPoints:目标图像中的点集,类型和srcPoints相同,且点的数量和顺序需要与srcPoints一一对应。
- method:计算单应性矩阵的方法。可以是以下值之一:
-
- cv2