自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

云中寻雾的博客

Keep reading, keep writing, keep coding,keep thinking,keep trying

  • 博客(865)
  • 资源 (6)
  • 收藏
  • 关注

转载 在物体检测中搞定小目标

在计算机视觉中,检测小目标是最有挑战的问题之一。本文给出了一些有效的策略。本文来自公众号:AI公园作者:Jacob Solawetz编译:ronghuaiyang从无人机上看到的小目标为了提高你的模型在小目标上的性能,我们推荐以下技术: 提高图像采集的分辨率 增加模型的输入分辨率 tile你的图像 通过增强生成更多数据 自动学习模型anchors 过滤掉无关的类别 为什么小目标检测很困难?小目标问题困扰着世界各地的...

2020-09-15 14:14:31 484

转载 Opencv的DNN模块如何用GPU加速

参考:https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/十分给力,建议细看

2020-09-15 14:07:27 2840

转载 BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结

本篇博客总结几种归一化办法,并给出相应计算公式和代码。1、综述1.1 论文链接1、Batch Normalizationhttps://arxiv.org/pdf/1502.03167.pdf2、Layer Normalizaitonhttps://arxiv.org/pdf/1607.06450v1.pdf3、Instance Normalizationhttps://arxiv.org/pdf/1607.08022.pdfhttps://github.com/Dmit

2020-09-14 19:27:22 584

转载 CNN全连接层和卷积层的转化

0. 前言自AlexNet网络在ImageNet LSVRC-2012的比赛中,取得了top-5错误率为15.3%的成绩后卷积神经网络CNN在图像深度学习中成为不可缺少的大杀器。以图像分类任务为例在对最后一个卷积层进行池化后一般会再接2~3个全连接层(Full Connected Layer),这是一个高维向低维特征映射的过程,多个全连接层的作用是增加函数非线性,可以理解为提升分类的准确度。这种结构在VGG(2014)系列中仍有使用,但是全连接层的加入会使模型带产生过量参数,之后的网络都在想办法减少和

2020-09-14 18:44:15 4059

转载 如何将卷积神经网络中的全连接层变成卷积层

全连接层实际就是卷积核大小为上层特征大小的卷积运算,一个卷积核卷积后的结果为一个节点,就对应全连接层的一个神经元。假设:最后一个卷积层的输出为7×7×512,连接此卷积层的全连接层为1×1×4096(相当于全连接网络有4096个神经元)。相当于一个全链接网络的输入层有7×7×512个输入神经元,下一层有4096个神经元。如果将这个全连接层转化为卷积层:1.共需要4096组滤波器2.每组滤波器含有512个卷积核3.每个卷积核的大小为7×74.则输出为1×1×4096由于每个滤波核的大小和上一.

2020-09-14 18:31:49 2082

转载 faster rcnn讲解很细

featuremap上每个滑窗中心对应原图的一个区域(感受野),其中心点替换掉上表中的(7.5,7.5)即可得到9个anchor的坐标。R-CNN:(1)输入测试图像;(2)利用selective search 算法在图像中从上到下提取2000个左右的Region Proposal;(3)将每个Region Proposal缩放(warp)成227*227的大小并输入到CNN,将CNN的fc7层的输出作为特征;(4)将每个Region Proposal提取的CNN特征输入到S...

2020-09-14 18:15:16 465

转载 从零开始写一个发送h264的rtsp服务器(下)

从零开始写一个发送h264的rtsp服务器(下)一、H264是如何通过rtsp发送的简单来说,H264就是通过打包到rtp协议的数据部分发送出去的。H264打包成rtp数据包有三种方式单一封包模式 组合封包模式 分片模式 要想弄明白这三种打包方式,必须先弄清楚h264的组成结构,或者叫组成单元。 二、H264结构单元H264数据流最基本的结构单元叫nalu单元。H264的nalu单元组成:[start code] + [nalu header] + [nalu

2020-09-14 11:17:32 793 1

转载 从零开始写一个发送h264的rtsp服务器(上)

从零开始写一个发送h264的rtsp服务器(上)一、什么是RTSP通常所说的rtsp协议其实包含三个协议: rtsp协议, rtp协议, rtcp协议各协议运作流程概要:第一阶段:rtsp协议负责沟通传输什么数据,传的是图像还是声音,还是两者混合?图像的话传是h264流,还是h265流,还是jpeg流?后续的rtp,rtcp协议是采用tcp还是udp,端口号是多少都是通过第一阶段的rtsp协议确定的。第二阶段:通过rtp协议传输数据,rtcp进行网络传输质量的监控第三阶段:通过rts

2020-09-14 11:14:11 568

转载 count(1)、count(*)与count(列名)的执行区别

执行效果:1. count(1) and count(*)当表的数据量大些时,对表作分析之后,使用count(1)还要比使用count(*)用时多了!从执行计划来看,count(1)和count(*)的效果是一样的。 但是在表做过分析之后,count(1)会比count(*)的用时少些(1w以内数据量),不过差不了多少。如果count(1)是聚索引,id,那肯定是count(1)快。但是差的很小的。因为count(*),自动会优化指定到那一个字段。所以没必要去coun...

2020-09-05 13:14:11 294

转载 ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

论文《ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks》的完整翻译,如有翻译不当之处敬请评论指出,蟹蟹!(2019-10-17)作者:Qilong Wang1, Banggu Wu1, Pengfei Zhu1, Peihua Li2, Wangmeng Zuo3, Qinghua Hu1发表:暂未知代码:https://github.com/BangguWu/ECANet摘要通道注意力在改善

2020-09-05 12:12:40 3573

转载 大盘点 | 十大即插即用的涨点神器!

大盘点 | 十大即插即用的涨点神器!作者:AmusiDate:2020-08-11来源:CVer微信公众号链接:大盘点 | 十大即插即用的涨点神器!前言最近出现了很多"即插即用"的网络模块,比如用来替换传统的卷积层,可以使你的网络轻松涨点!本文就来盘点一下近期(6.22-至今)较为亮眼的论文,也许对你目前的科研工作会有所帮助,或者有所启发。有意思的是Amusi 统计出正好10篇论文,其实每一篇都可以单独写出文章来分享,但这里汇总成大盘点系列,方便做对比和参考。注:10篇论文PDF均

2020-09-04 16:16:58 9244

转载 有人手写实现李航《统计学习方法》书中全部算法

有人手写实现李航《统计学习方法》书中全部算法作者:AmusiDate:2020-05-20来源:CVer微信公众号链接:有人手写实现李航《统计学习方法》书中全部算法前言不管你是学习CV,还是NLP,或者其他方向,应该都多多少少看过或者听过李航教授的《统计学习方法》这本书。Amusi 认为这是一本超级棒的AI入门,再具体一点机器学习入门的书籍。记得第一次拿到手里的时候,很是惊讶:如此"轻薄"。懂的自然懂,跟其他技术书籍相比,这本书的重量就是一股清流。"轻薄"但不简单,内容涵盖了机器学习大

2020-09-04 16:06:45 1522 1

转载 tf.layers.dense()的用法

dense :全连接层 相当于添加一个层函数如下:tf.layers.dense(inputs,units,activation=None,use_bias=True,kernel_initializer=None, ##卷积核的初始化器bias_initializer=tf.zeros_initializer(), ##偏置项的初始化器,默认初始化为0kernel_regularizer=None, ...

2020-09-03 16:01:37 1393

转载 pytorch错误解决:Missing key(s) in state_dict: Unexpected key(s) in state_dict:

在进行模型测试时报错:Missing key(s) in state_dict: xxxxxxxxxxUnexpected key(s) in state_dict:xxxxxxxxxx报错原因:在模型训练时有加上:【可以加速训练速度】model = nn.DataParallel(model)#cudnn.benchmark = True但是在模型测试推断时,在模型参数被加载到模型前没有加这句话,故报出上面的错误。解决:在模型参数被加载到模型前加下面的语句:..

2020-08-30 19:55:34 12418 1

转载 apex 安装/使用 记录

一、apex是什么:混合精度什么用:提升GPU上的训练速度GitHub:https://github.com/NVIDIA/apexAPI文档:https://nvidia.github.io/apex使用要求:Python 3CUDA 9 or newerPyTorch 0.4 or newer. The CUDA and C++ extensions require pytorch 1.0 or newer.推荐已发布的最新版本,见https://pytor.

2020-08-29 20:46:04 1936 2

转载 ImportError: No module named apex

调用了一个pytorch的项目,结果里面要用英伟达的apex,https://github.com/NVIDIA/apex看的有点不明白,好在有个网友建议也可以直接下载文件夹 importhttps://github.com/nvidia/apex#__NO_LINK_PROXY__或者直接git clone https://www.github.com/nvidia/apex 下载在当前项目目录下或者,比较难成功git clone https://www.github...

2020-08-29 19:52:17 1687

转载 tensorflow对应cuda的兼容版本问题

以下都以win10环境为主:一、显卡驱动版本CUDA官方手册截止2020.2.19Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will .

2020-08-26 21:50:26 8445 1

转载 tensorflow各个版本的CUDA以及Cudnn版本对应关系

概述,需要注意以下几个问题:(1)NVIDIA的显卡驱动程序和CUDA完全是两个不同的概念哦!CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。CUDA的本质是一个工具包(ToolKit);但是二者虽然不一样的。显卡驱动的安装:当我们使用一台电脑的时候默认的已经安装了NVIDIA的显卡驱动,因为没有显卡驱动根本用不了显卡嘛,但是这个时候我们是没有CUDA可以用的

2020-08-26 21:49:49 2533 1

转载 10分钟看懂Docker和K8S

2010年,几个搞IT的年轻人,在美国旧金山成立了一家名叫“dotCloud”的公司。这家公司主要提供基于PaaS的云计算技术服务。具体来说,是和LXC有关的容器技术。LXC,就是Linux容器虚拟技术(Linux container)后来,dotCloud公司将自己的容器技术进行了简化和标准化,并命名为——Docker。Docker技术诞生之后,并没有引起行业的关注。而dotCloud公司,作为一家小型创业...

2020-08-25 22:38:46 240

转载 使用Tensorflow Object Detection API进行集装箱识别并对集装箱号进行OCR识别

使用Tensorflow Object Detection API进行集装箱识别并对集装箱号进行OCR识别两年多之前我在“ex公司”的时候,有一个明确的项目需求是集装箱识别并计数,然后通过OCR识别出之前计数的每一个集装箱号,与其余业务系统的数据进行交换,以实现特定的整体需求。当时正好Tensorflow Object Detection API 发布了,就放弃了YOLO或者SSD的选项,考虑用TF实现Demo做POC验证了。作者:AiChinaTech|2020-03-27 20:22两年多之

2020-08-25 20:39:39 2598 1

转载 自然场景OCR检测(YOLOv3+CRNN)

(自然场景OCR检测(YOLOv3+CRNN))(中文+英文模型)前言最近对于自然场景下的OCR比较有兴趣,所以总结了一些目前OCR现状,并且找了一个自然场景OCR的项目练练手。本人新手小白,若出现理解不当的地方,还望指出。简介目前的主流自然场景OCR模型:文字检测+文字识别文字检测:解决的问题是哪里有文字,文字的范围有多大。主要方法:1.CTPN:水平文字检测,四个自由度,类似物体检测(常用成熟基础)。2.目标检测:如YOLO、SSD、Mask-R-CNN。3.Seglink:

2020-08-25 20:02:55 3663 2

转载 [OpenCV实战]6 基于特征点匹配的视频稳像

在这篇文章中,我们将学习如何使用OpenCV库中称为特征点匹配的技术以实现简单视频稳定稳像。我们将讨论该算法并共享代码,以便在OpenCV中使用此方法设计一个简单的稳定器,最好OpenCV3.4.3以上实现代码。什么是视频稳定,视频稳定是指用于减少相机运动对最终视频影响的一系列方法,理解成消除视频抖动就行了。见下图通常用拍摄会出现轻微的抖动,比如手机拍摄视频,后期需要对其进行视频稳像操作。视频稳定的需求涉及许多领域。它在消费者和专业摄像中极为重要。因此,存在许多不同的机械,光学和算法解决方案。即使在

2020-08-25 10:34:28 2544 2

转载 【TensorFlow】优化方法optimizer总结(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)解析(十三)

本文仅对一些常见的优化方法进行直观介绍和简单的比较,主要是一阶的梯度法,包括SGD, Momentum, Nesterov Momentum, AdaGrad, RMSProp, Adam。 其中SGD,Momentum,Nesterov Momentum是手动指定学习速率的,而后面的AdaGrad, RMSProp, Adam,就能够自动调节学习速率。1、SGDSGD全名 stochastic gradient descent, 即随机梯度下降。不过这里的SGD其实跟MBGD(minibatch

2020-08-24 15:23:00 1375

转载 tensorboard模型评估图(mAP, mAP(large), mAP(medium), mAP(small), mAP(0.50IOU))

一、准确率:DetectionBoxes_Precision:mAP:平均精度超过IOU阈值的平均精度,范围从.5到.95,增量为.05mAP(large):大对象的平均精度(96 ^ 2像素<区域<10000 ^ 2像素)mAP (medium):中等大小对象的平均精度(32 ^ 2像素<区域<96 ^ 2像素)mAP (small):小对象的平均精度(区域<32 ^ 2像素)(此处为区域为面积)mAP@.50IOU:平均精度为50%IOUmAP@

2020-08-23 14:45:59 3289 2

转载 Warm-up和Cos设置LR

Warm-up和Cos设置LRimport bisectfrom bisect import bisect_rightimport matplotlib.pyplot as pltimport numpy as npimport mathlr = []iters=[]def _get_warmup_factor_at_iter( method: str, iter: int, warmup_iters: int, warmup_factor: float): """

2020-08-22 14:09:13 1638

转载 Python解压压缩包的几种方法

这里讨论使用Python解压例如以下五种压缩文件:.gz .tar .tgz .zip .rar简单介绍gz:即gzip。通常仅仅能压缩一个文件。与tar结合起来就能够实现先打包,再压缩。tar: linux系统下的打包工具。仅仅打包。不压缩tgz:即tar.gz。先用tar打包,然后再用gz压缩得到的文件zip:不同于gzip。尽管使用相似的算法,能够打包压缩多个文件。只是分别压缩文件。压缩率低于tar。rar:打包压缩文件。最初用于DOS,基于window操...

2020-08-20 20:32:15 930

转载 python不解压读取zip压缩包图片

python不解压读取zip压缩包图片/文件限于电脑上空间不够,没有办法将上百G的数据集解压到电脑上,因此需要一种方法能够直接读取压缩包内的图片进行训练。首先,代码如下:#!/usr/bin/env python3#coding=utf-8#============================##Program:readzip.py# 不解压读取.zip压缩包内的图片并显示#Date:19-11-21#Author:liheng#Version:V1.0#==

2020-08-20 20:01:28 2335

转载 机器学习如何提高GPU利用率

前言首先,如果你现在已经很熟悉tf.data+estimator了,可以把文章x掉了╮( ̄▽ ̄””)╭但是!如果现在还是在进行session.run(…)的话!尤其是苦恼于GPU显存都塞满了利用率却上不去的童鞋,这篇文章或许可以给你打开新世界的大门噢( ̄∇ ̄)如果发现经过一系列改良后训练效率大大提高了,记得回来给小夕发小红包( ̄∇ ̄)不过,这并不是一篇怒贴一堆代码,言(三)简(言)意(两)赅(语)就结束的CSDN文风的文章。。。所以伸手党们也可以X掉了╮( ̄▽ ̄””)╭缘起很早很早之

2020-08-20 19:18:24 4511

转载 将Yolov3模型转化为tensorflow模型进行压缩,推理速度提高近6倍

发表时间:2020-04-181、使用tensorflow-yolo-v3中的convert_weights_pb.py转tensorflow模型转换命令:python convert_weights_pb.py --class_names /home/***/text.names --weights_file /home/***/yolov3.weights --data_format NHWC --output_graph /home/***/tensorflow-yolo-v3_con..

2020-08-20 08:39:31 1130

转载 pytorch torch.nn 实现上采样——nn.Upsample

Vision layers1)UpsampleCLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)上采样一个给定的多通道的1D (temporal,如向量数据), 2D (spatial,如jpg、png等图像数据) or 3D (volumetric,如点云数据)数据假设输入数据的格式为minibatch x channels x [optional depth].

2020-08-19 19:31:33 28076

转载 Tensorflow模型量化4 --pb转tflite(uint8量化)小结

Tensorflow模型量化4 --pb转tflite小结(uint8量化)实验环境:tensorflow-gpu1.15+cuda10.0模型的fp16量化和int8量化我之前有写,参考:龟龟:Tensorflow模型量化实践2--量化自己训练的模型​zhuanlan.zhihu.com这次发现uint8量化时有参数设置,所以准备是从头再梳理一遍2.参与量化的模型:训练tensorflow-object-detection API 得到的ssdlite_mobilenet_v2模型.

2020-08-19 18:46:11 5079 4

转载 android 平台上使用opencl 调用gpu 进行加速

其实去年就已经把Android上OpenCL的demo做出来了,但是由于种种原因一直没有开源–嗯现在就不吝啬了~奉献给大家~后面在Android上还实现了很多种并行化的算法,比如SHA-1、HDR、K-means、NL-means、SRAD等等,会在近期整理好之后开源的。原文发表在了异构开发技术社区整理成教程是队友做的,十分感谢~原博文地址: 原文链接已经失效,无法查看了,好遗憾队友的博客项目github地址代码CSDN地址下面是干货:Android平台利用OpenCL框架实现并行.

2020-08-19 18:44:09 2531

转载 Android平台利用OpenCL框架实现并行开发初试

在我们熟知的桌面平台,GPU得到了极为广泛的应用,小到各种电子游戏,大到高性能计算,多核心、高并行化的GPU成为我们日常娱乐和科学研究必不可少的“利器”。同样,在近些年兴起的移动平台,诸如智能手机、平板电脑等,也日渐重视GPU在其应用中的作用。近几年,随着并行化的发展,越来越多的手持设备硬件厂商重视对并行化标准的支持和应用。这里,需要支持OpenCL这一开发运算标准,该标准以异构平台为目标,与CUDA、Direct Compute主要面向PC平台不同,因而得到了众多厂商的支持,如下表:...

2020-08-19 18:42:03 1291 1

转载 Tensorboard详解

1. Tensorboard简介对大部分人而言,深度神经网络就像一个黑盒子,其内部的组织、结构、以及其训练过程很难理清楚,这给深度神经网络原理的理解和工程化带来了很大的挑战。为了解决这个问题,tensorboard应运而生。Tensorboard是tensorflow内置的一个可视化工具,它通过将tensorflow程序输出的日志文件的信息可视化使得tensorflow程序的理解、调试和优化更加简单高效。Tensorboard的可视化依赖于tensorflow程序运行输出的日志文件,因而tensorbo

2020-08-19 14:54:07 20171

原创 AttributeError: module ‘tensorboard.util‘ has no attribute ‘PersistentOpEvaluator‘解决方案

在服务器中输入tensorboard --logdir path 提示如下错误AttributeError: module 'tensorboard.util' has no attribute 'PersistentOpEvaluator'然后Google了一下, 在https://github.com/tensorflow/tensorboard/issues/1724中找到了解决方案解决方案:pip show tensorboard找到location的位置, 然后去里..

2020-08-19 10:55:14 601

转载 torch.unsqueeze() 和 torch.squeeze()

1. torch.unsqueeze 详解torch.unsqueeze(input, dim, out=None)作用:扩展维度返回一个新的张量,对输入的既定位置插入维度 1注意:返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。如果dim为负,则将会被转化dim+input.dim()+1参数: tensor (Tensor)– 输入张量 dim (int)– 插入维度的索引 out (Tensor, optional)– 结果张量import tor...

2020-08-19 09:46:11 4409

转载 目标检测的性能评价指标

写在前面:纸上得来终觉浅,绝知此事看源码!看源码是理解最准确的方法,没有之一。一般来说对于应用深度学习方法的网络模型来说,我们希望网络模型速度快,内存小,精度高,即快、小、好。回到目标检测问题,一般的常用评价指标有:map(平均准确度均值,精度评价),速度指标(FPS即每秒处理的图片数量或者处理每张图片所需的时间,当然必须在同一硬件条件下进行比较),对于网络的速度与许多因素有关,比如模型的参数量,激活函数,损失函数下面对这2个评价指标仔细介绍。如有不对的地方,还望告知。1.map(平均准确度均值)

2020-08-19 09:27:19 3673

转载 [CV] 通俗理解『卷积』——从傅里叶变换到滤波器

引子因研究兴趣不在图像处理,所以对图像中的『卷积』操作未做深入思考,直到某天,灵光一闪,我突然意识到图像『卷积』应该可以和『信号处理』联系起来更进一步图像卷积的本质,是提取图像不同『频段』的特征然而放眼望去,市面上大谈特谈『卷积』的文章,各种雷同,互相『借鉴』,都是在讲解卷积的不同方式、卷积的参数共享、卷积的具体操作、卷积在图像上的效果,竟鲜有一篇像样的文章,真正触及『卷积』的本质、探索『卷积』和『信号处理』的联系!作为一个EE科班出生、当年『信号系统』『数字信号处理』课程接近满分的

2020-08-19 09:12:36 1042

转载 基于深度学习的行人重识别研究综述 罗浩.ZJU

前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术。ReID有一个非常重要的特性就是跨摄像头,所以学术论文里评价性能的时候,是要检索出不同摄像头下的相同行人图片。

2020-08-18 20:28:34 1479

转载 torch.max()用法

版权声明:本文为CSDN博主「摇摆的果冻」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/Z_lbj/article/details/79766690torch.max(input) → Tensor返回输入tensor中所有元素的最大值a = torch.randn(1, 3)>>0.4729 -0.2266 -0.2085 torch.max(a)>>0.4729

2020-08-18 20:15:46 2229

fashion-mnist数据集和论文

fashion-mnist数据集和论文

2018-06-07

MeanShift实现代码和视频

MeanShift算法实现代码,可以运行,里面还有测试的汽车视频

2018-06-06

python+OpenCV+TensorFlow人脸识别

python+OpenCV+TensorFlow实现人脸识别,包含人脸检测和图像处理,

2018-05-30

python+opencv实现全景拼接

python+opencv实现图像的全景拼接,里面有中文注释,和附带的图像

2018-06-06

OpenCV-master

OpenCV-master,在GitHub上有,不过下载速度非常慢,所以我把它上传到CSDN OpenCV-master,在GitHub上有,不过下载速度非常慢,所以我把它上传到CSDN OpenCV-master,在GitHub上有,不过下载速度非常慢,所以我把它上传到CSDN

2018-05-30

Thunderfighter.exe

雷霆战机小游戏,可直接运行。下载的是一个压缩包,打开后会自动解压,并在桌面创建一个快捷方式,点击快捷方式就可以打开了。支持一个初始版的小游戏,有点简陋,以后会慢慢改进的>_<

2020-06-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除