ZJNU 2186 - 收集金币 (DP)

ZJNU 2186 - 收集金币

题面

pic

题目勘误:可以任意改变\(x\)轴的速度,\(V_y\)定。

思路

发现\(-\frac{V_y}r\le V_x\le \frac{V_y}r\)\(V_x\le |\frac{V_y}r|\)

\(r\le|\frac {V_y}{V_x}|\)

故移动轨迹的斜率应当大于等于\(r\)或者小于等于\(-r\)

于是考虑\(O(n^2)\)的DP,假设可以收集到第\(i\)个金币,那么只要\(j\)金币与\(i\)金币的连线斜率满足上述条件,则在收集完\(i\)金币后便可以继续收集\(j\)金币

\[dp[i]=\max(dp[i],dp[j]+1) \]

对所有金币根据\(y\)轴从小到大排序后,枚举\(j=1\sim i-1\)来转移即可

初始位置由于可以任意选择\(x\in[0,w],y=0\)​​,所以不难得出任意一个金币都有可能被收集到,所以\(dp\)数组初始值全部设置为\(1\)再转移即可,最后答案取大输出

#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define SUM(a) accumulate(all(a),0LL)
#define MIN(a) (*min_element(all(a)))
#define MAX(a) (*max_element(all(a)))
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'\n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}

int n,r,w,h;
struct node
{
    int x,y;
    bool operator < (const node& a) const
    {
        if(y!=a.y)
            return y<a.y;
        return x<a.x;
    }
}ar[1050];
int dp[1050];

bool ck(int i,int j)
{
    int dy=abs(ar[i].y-ar[j].y);
    int dx=abs(ar[i].x-ar[j].x);
    return dy>=1LL*dx*r;
}

void solve()
{
    rep(i,1,n)
    {
        cin>>ar[i].x>>ar[i].y;
        dp[i]=1;
    }
    sort(ar+1,ar+n+1);
    rep(i,1,n)
    {
        repp(j,1,i)
        {
            if(ck(j,i))
                dp[i]=max(dp[i],dp[j]+1);
        }
    }
    cout<<(*max_element(dp+1,dp+n+1))<<'\n';
}
int main()
{
    closeSync;
    while(cin>>n>>r>>w>>h)
    {
        solve();
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值