矩阵特征值,特征向量求法

矩阵,特征值,特征向量对应关系

  对应关系表:

核心公式:ha=λa

抽象矩阵求特征值和特征向量

1.A+λE不可逆↔ |A+λE|=0→ -λ为A的一个特征值

  |A+λE|=0→ -λ为A的一个特征值

  齐次方程组有非0解(A+λE)x=0有非0解→ |A+λE|=0→ -λ为A的一个特征值

2.A的各行元素之和为a ,则A有一个特征值a, 对应特征向量k(1,1,1…1)T.k≠0

3.η1,η2,η3….ηn是Ax=0的基础解系

                                          

4.若AB=kB→ A(β1,β2…βn)=k(β1,β2…βn)

                  → A有特征值k,对应特征向量B的非0列

5.|A|=0 / n阶矩阵A不可逆 / A的列向量组线性相关 / AB=0且B≠0→ A有特征值0

6.f(A)=0→ f(λ)=0(的所有特征值λ一定满足f(λ)=0但所有满足f(λ)=0的不一定都是A的特征值)

详情参考小吴学长660 322~325

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值