一文完成vosviewer共现网络,使用知网及web of science导出文献

目录

使用vosviewer进行文献分析

安装部分:

实例部分:

1.利用知网导出的文献进行分析

2.利用web of science 导出的文献进行分析

关注微信公众号可获得文章所述需要的软件,了解更多生物信息学及python作图 


vosviewer是Van Eck 和Waltman于2009年开发的一款基于JAVA的免费软件

计量软件千千万(其实就几个)与其他文献计量软件相比,vosviewer最大的优势就是图形可视化效果好强,适合大规模数据,基于java通用性和适配性强,可跨平台使用,操作简单易上手,很快就能做出如下图一样的共现。

对于写文献综述更是如有神助,于茫茫文献中提取关键字、印证分析,并以清晰的关系进行展示;

同时,助力找到当前相关方向的热点研究方向,便于定下一个小目标。

话不多说,直接开卷

使用vosviewer进行文献分析

安装部分:

第一步:vosviewer官网下载页面:https://www.vosviewer.com/download

第二步:解压运行

此时,未安装java则会出现以下弹窗,该软件基于java故需要配置相关环境

第三步(如安装过java则可跳过):

根据提示,我们选择安装java1.8版本

官网地址:(注,下载安装包时需要根据提示进行注册,不过问题不大)

https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html

下载完成后双击安装即可

第一次弹出的安装项目是jdk,第二次弹出的安装项目为jre

如需更换至c盘以外,建议安装在同一目录下(目录及命名参考)

注:后续如有继续使用java的需求,可自行配置环境变量此处略过

安装完成后即可使用vosviewer。

实例部分:

1.利用知网导出的文献进行分析

1.根据主题导出需要的文献。

2.在vosviewer中创建图并导入文件。

    创建一个新的图

 

 

以下选项均可根据需要自行选择,图示为关键词共现

3.点击finish即可得出共现图

其中,颜色一致表示距离越近,相关性则越强,关键字之间的共同出现情况也用线条表示

右边栏可以进行属性的调节,例如大小、颜色等

别忘了保存图片

2.利用web of science 导出的文献进行分析

1. 根据主题导出需要的文献。(注:默认的导出方式可选项过少一定要一定要点击自定义全部选上

再来一遍(注:默认的导出方式可选项过少一定要一定要点击自定义全部选上

2. 在vosviewer中创建图并导入文件。

其余操作与知网类似,就得到了下图

关注微信公众号(生物海洋计算机支线)可获得文章所述需要的软件,了解更多生物信息学及python作图 (二维码可能会被吞,呜呜呜)

### 回答1: VOSviewer是一种用于分析Web of Science数据的可视化工具。它可以帮助用户快速识别出研究领域中的关键词、作者、期刊等信息,并通过可视化图表的方式展示出来。用户可以根据自己的需求进行筛选和排序,以便更好地理解和分析研究领域的发展趋势和热点问题。同时,VOSviewer还可以将分析结果导出为图像或数据文件,方便用户进行后续的研究和应用。 ### 回答2: VOSviewer是一款用于可视化和分析科研文献的软件工具,它可以对Web of Science数据库中的文献数据进行分析、可视化和导出。通过对Web of Science中的论文元数据进行提取和分析,VOSviewer可以生成不同类型的图表和图形,以便用户更好地了解研究领域的发展趋势、学科之间的关系以及研究主题等方面的信息。 VOSviewer的分析功能非常强大,可以实可视化网络分析、文献引分析、关键词分析、聚类分析等多种分析方法。其中,最常用的方法是词分析,即分析文献中出频率较高的关键词,并基于这些关键词之间的关系构建关键词网络图,以揭示研究领域的热点和趋势。此外,在使用VOSviewer进行分析时,还可以进行图形调整、颜色分类、标注节点和边等操作,以获得更好的结果。 总的来说,VOSviewer作为一款科研文献分析工具,在帮助用户更好地了解学科热点、趋势和发展方向方面具有很大的价值,可以帮助学者快速准确地找到自己领域内的前沿研究方向和研究重点,从而提高研究效率和质量。然而,也需要注意的是,VOSviewer只是一种分析工具,其结果并不能完全代表学科发展的全貌,需要结合实际研究情况进行判断和分析。 ### 回答3: VOSviewer是一款免费的可视化分析工具,广泛应用于文献计量学、社会网络分析、科学合作网络分析、标签云等领域。此工具中最常用的分析数据是SCI、SSCI、AHCI中的 Web of Science 数据库。 在使用VOSviewer之前,需要先准备好Web of Science数据的导出文件。在导出数据时,需要选择「Full record and cited references」,并保证被导出数据至少有1000篇论文以上。如果需要使用本地用户词典或同义词典来对关键词进行分类,同时可以将相关词语加载到软件中。之后就可以在VOSviewer主界面上选择导入文件,并对其进行分析。 在分析时,VOSviewer提供多种可视化展示方式,如网络图、轮廓图、地图等。其中最常用的是网络图,它可以通过控制鼠标滚轮和拖拽来进行视角的变换。而网络图的各个节点则代表文献中的关键词。节点的大小和颜色代表了该关键词在文献中的重要程度,节点的密度代表了该关键词和其他节点之间的相似度。可以通过节点的聚合和拖拽,将不同的关键词进行分类或者合并。 此外,在网络图的右侧还会列出板块的色系,每一种颜色代表一个独立的关键词板块。通过点击该颜色,软件可以标记出网络图中在该板块中的节点。此功能可以为用户提供每篇文献的关键词分类,有助于进一步的分析研究。 总的来说,VOSviewer是一个非常实用的文献计量学工具,在Web of Science数据分析中大有用处。应用这个工具,可以帮助用户更好地了解文献之间的关系和热点,以及研究人员之间的合作关系和研究方向,为进一步的研究提供了宝贵的帮助和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值