Multiple View Geometry in computer vision 学习记录02

 

 


2.3 Projective transformations 

我姑且把这个翻译为投影变换,大致来说投影变换是投影平面 \mathrm{IP^{2}} 中一种可逆的点到点、线到线的映射。我觉得要注意的就是两点:可逆的线到线的(直线总不可能投影成弯的吧)。投影也被称为直射变换(Collineation,共线,这个名字很形象)、投影变换(Projective transformation)、单应性变换(Homography)。

           投影的代数定义为:一个映射 h:\mathrm{IP^{2}\rightarrow IP^2} ,存在一个3*3的非奇异矩阵 \mathbf{H} 使得任何 \mathrm{IP^{2}} 中一点 \mathrm{x} 都有 h(\mathbf x)=\mathrm{Hx}

           上面的代数定义告诉我们任何一个投影变换都是齐次坐标下的线性变换,反之亦然。之前说重要的两点是:可逆、线到线。非奇异矩阵就是可逆的,所以简单看一下线到线的映射。假设有点x在直线l上,则有 \mathbf{l}^{T}\mathbf{x}=0 。进一步由H可逆可以写成 \mathbf{l}^{T}\mathbf{H^{-1}Hx}=0。我们可以机智地把这个等式前后结合,解读成直线l上点投影后得到的点 \mathbf{Hx} 同样在一条直线上,这条直线是 \mathbf{H}^{-T}\mathbf l

  • 投影变换

           投影变换的代数表达 \mathbf x'=\mathrm{Hx} 展开如下:

                                     

          同样值得注意的是决定H的是9个系数间的比例,所以其dof是8.

  • 平面间映射

          这一小部分讲的也比较难读懂。个人认为主要讲了“中心投影”。中心投影更确切地应该叫做透视,学过素描的人应该理解这个,我觉得这里的中心应该就是透视中的灭点。这部分没有给详细定义就不多说了。主要感性地理解一下下图吧:中心投影把一个平面变换成另一个平面,两者间对应的直线都可以看成是一个过投影中心的平面与这两个平面的交线。

                        

  • 例:从一个平面的透视图像来消除投影畸变

            作为一名绘画爱好者我必须说明一下透视是产生立体感的关键,不过这里我们还是考虑怎么消除这种投影畸变,我们想看到一个平面内的平行直线而不是在透视效果下会相交的“平行线”。

            道理很简单,因为投影就是一个线性变换H,我们只要把这个H求出来就行,用它的逆就可以消除投影畸变。

            我们假设点(x,y)通过H映射到(x',y'),比较机智地用一下投影变换的代数定义:

                      

确定两个等式很自然,因为一个点的自由度只有2而不是3.这里我们用了点的齐次坐标的两个比例去套公式。整理一下写成如下的样子:

                                             

这已经有两个等式了。前面说过H的自由度是8,所以我们用四个点就能得到8个等式进而解出H。需要特别注意的是,这四个点中任意三点都不能共线!

最后要说明一下:投影种类很多。除了透视还有“多次投影的串联”“打在另一平面的阴影”等。

 

2.3.1 Transformations of lines and conics

  • 线的变换

线的变换其实在这一部分开始时已经间接证明了。我们为了说明投影变换满足线到线映射利用了

\mathbf{l}^{T}\mathbf{H^{-1}Hx}=0

我们机智地把前两项后两项分别结合在一起解读这个等式,那么上面这个式子就可以看成 \mathbf{l'}^T\mathbf x'=0 。其中 \mathbf{l'}^T=\mathbf l^T\mathbf H^{-1}, \mathbf {x'=Hx}。稍微变得好看一点就得到了直线的投影变换如下:

                                                                              \mathbf{l'=H}^{-T}\mathbf l

  • 圆锥曲线的变换

导出圆锥曲线投影变换的讨论跟上面过程类似。先有圆锥曲线满足的式子 \mathbf{x}^{T}\mathbf{Cx}=0 。然后把变换关系 \mathbf{H^{-1}x'=x} 带入得到:\mathbf x^T\mathbf{Cx=x'}^T\mathbf H^{-T}\mathbf{CH^{-1}x'}=0 。显然我们可以看出来变换后的x'所在的圆锥曲线是:

                                                                          \mathbf{C'=H}^{-T}\mathbf{CH^{-1}}

对于对偶圆锥曲线的投影变换,完全同理的步骤可以得到结果:

                                                                          \mathbf{C^*'=H}\mathbf{C^*H}^{T}

 


下一章节将会讲变换的层级。作为热身我先放上下图,我们可以直观感受一下相似、仿射、投影之间的区别,体会他们之间的层级。

 


 

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《多视角几何计算机视觉中的应用》是一本介绍计算机视觉领域多视角几何理论和应用的重要书籍。该书对三维几何重建、结构从运动重建、摄像机标定和三维物体跟踪等多个方面进行了深入的探讨。 书中通过对多视角几何原理的解析,帮助读者了解多个视角的图片是如何联合起来构建三维空间的。同时还介绍了三维物体的降维表示,如何从二维图像中计算出相机的运动轨迹、三维点的空间坐标等重要理论。 本书还讨论了多个应用场景。例如物体识别、视觉追踪、目标跟踪和视觉测量等领域中如何应用多视角几何理论和技术。此外,该书还涵盖了大量的示例,深入浅出地讲解了多视角几何中的重要概念和算法,对于从事计算机视觉研究的科研人员、工程师等具有很高的参考价值。 总之,《多视角几何计算机视觉中的应用》是一本应用广泛的计算机视觉专业书籍,它系统地介绍了多视角几何理论及其应用,通过大量的实例,能够让读者更好地了解计算机视觉领域中多视角几何的理论和方法,进而为实际应用提供了帮助。 ### 回答2: 《Multiple View Geometry in Computer Vision》是由Richard Hartley和Andrew Zisserman合著的一本介绍计算机视觉中多视图几何的教材,该书囊括了多视图立体重建、多视图三角化、基础矩阵和本质矩阵估计、单目SLAM等多个领域的内容。本书以深入浅出的方式介绍了多视图几何的核心理论,并指导读者将这些理论应用于实际场景中的计算机视觉问题解决方案。 本书内容主要分为三个部分,第一部分介绍了多视图几何基础理论,包括三角化、投影和相机模型、单应性和基础矩阵等;第二部分介绍了立体和运动估计,如结构光三维重建、视差估计、非刚性结构运动跟踪等;第三部分介绍了计算机视觉中的实际应用,包括单目SLAM、多视图跟踪和三维重建等。 本书涵盖了计算机视觉中多视图几何的各个方面,对于想要深入学习该领域知识的学者和研究者来说是一本非常好的参考书。在本书的指导下,读者可以理解计算机视觉中多视图几何的核心理论,并将这些理论应用于实际场景中的计算机视觉解决方案中。因此,多视图几何计算机视觉中具有重要的研究和应用价值。 ### 回答3: 《Multiple View Geometry in Computer Vision》是一本由Richard Hartley和Andrew Zisserman编写的经典教材。该书主要讲述了计算机视觉中多视图几何的基本内容和应用。多视图几何计算机视觉中的一个重要研究领域,其目的是通过多张图像来恢复三维世界的几何结构和对象姿态。 该书首先介绍了多视图几何中的基本概念和数学工具,如相机模型、基础矩阵、本质矩阵和三角测量等。然后,书籍详细地介绍了多视图几何的多个应用场景,包括立体视觉、结构从运动、多视角拍摄和三维重建等。 该书的特点在于其深入浅出的风格,注重数学理论和实践应用的平衡。此外,该书中还包含了丰富的示例和算法,可以帮助读者更好地理解和应用多视图几何技术。 总之,该书是计算机视觉领域中多视图几何的经典教材,不仅适合计算机视觉专业的研究者和学生,也适合其他相关领域的研究者、工程师和科学家参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值