概述
在32位机器上不能直接进行64位数据的除法,比如a或b是64位的数据的时候,要计算a/b,不能直接data = a/b;这样的计算,编译器会报错,缺少相关的指令。这就需要我们单独去实现64位数据的除法函数。
在32位机器上实现64位数据除法的方式有很多,主体思想就是分解成32位的数据去进行除法或者进行移位计算,一个数往右移一位等于该数除以2,往右移两位等于该数除以4,也就是移位n次等于除去2^(n-1)。
linux内核中32位机的64位除法函数实现
linux内核中实现了div64_u64_rem()和div64_u64()函数用于计算64位数据的除法运算。两个函数的区别是div64_u64_rem()函数会计算出余数,div64_u64()函数之会返回商。
下面一起看一下div64_u64_rem()函数的实现。
/**
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: 64bit dividend 被除数
* @divisor: 64bit divisor 除数
* @remainder: 64bit remainder 余数
*
* This implementation is a comparable to algorithm used by div64_u64.
* But this operation, which includes math for calculating the remainder,
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
* systems.
*/
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
/* 除数右移32位,用于后续判断除数是否大于2^32 */
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
/* 假如除数小于2^32,直接使用64位数除以32位数的函数来计算 */
u32 rem32;
quot = div_u64_rem(dividend, divisor, &rem32);
*remainder = rem32;
} else {
/* 假如除数大于等于2^32的情况 */
/* 先计算除数除以2^(32-1)之后得到的商的最高有效位,假如除数是4*(2^32),那么这里的n就等于2(4=b`100) */
int n = fls(high);
/* 利用 a/b=2a/2b的定理,先将被除数除以2^(n-1),然后除数也除以2^(n-1),最后再调用64位数除以32位数的函数来计算,因为除数除以2^(n-1)就能保证得到小于2^32的数 */
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
/* 得到商之后,用乘法来计算余数 */
*remainder = dividend - quot * divisor;
if (*remainder >= divisor) {
quot++;
*remainder -= divisor;
}
}
return quot;
}
从过上面的分析可以看出,实现这个函数的依赖一个关键的函数div_u64_rem();这个函数允许被除数是64位的数据,除数是32位的数据,对于32位机器来说,(uint64_t)a/(uint32_t)b,这样的运算也是不被允许的,我们再继续看看div_u64_rem()是怎么实现的。
static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
{
*remainder = do_div(dividend, divisor);
return dividend;
}
可以看到div_u64_rem()在32位机器上的实现是一个内联函数,并且是通过调用do_div()函数来实现的,我们再看看do_div()是如何实现的。
/* The unnecessary pointer compare is there
* to check for type safety (n must be 64bit)
*/
# define do_div(n,base) ({
\
uint32_t __base = (base); \
uint32_t __rem; \
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
if (__builtin_constant_p(__base) && \
/* 判断除数是不是2的幂次方 */
is_power_of_2(__base)) {
\
/* 通过乘法算余数 */
__rem = (n) & (__base - 1); \
/* 被除数右移位来计算商 */
(n) >>= ilog2(__base); \
} else if (__builtin_constant_p(__base)