tensorflow 训练时出现 [maximum box coordinate value is larger than 1.100000: ][1.704]

原因1:是标记的目标太小

#方法1:忽视结果

找到目录:…/models-master/research/object_detection/core/box_list_ops.py 这个文件,
修改第796行:
原代码:
max_assert = tf.Assert(tf.greater(max_val, 1.01), ['max value is lower than 1.01: ', max_val])
修改为:
因为的是1.704,所以设置为比1.704大的输

max_assert = tf.Assert(tf.greater(max_val, 1.8),
                             ['max value is lower than 1.8: ', max_val])

参考链接:https://github.com/tensorflow/models/issues/1754

原因2:

box的最大宽和高大于图片本身的宽和高
在这里插入图片描述
例如上面图片,正常情况图像分辨率为:600300,红色box的大小为400250,但是由于xml文件中,图片中的宽和高弄反了,导致图像的分辨率为300*600了,box的大小由原来的400/600=0.66 (<1)变成了 400/300 = 1.33 (>1),box 的长度比图像的长度还大了,所以导致报错。
因此要好好检查自己的数据,图片大小有没有弄错。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值