如果不知道如何使用预训练模型训练的朋友,使用resnet18模型训练自己的数据集的教程请看这篇博客
一、如果我们网络没任何修改
还是训练imagenet的数据集,1000个类别,那么只需以下代码:
model_ft = models.resnet18(pretrained=True)
model_ft = model_ft.to(device)
二、如果只修改训练自己数据集类别
如果我们训练自己的数据集,假如自己的数据集只有10个类别,那么需先加载预训练模型,然后修改最后的全连接层,改成以下代码加载预训练模型:
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)
这里只是resnet18修改的方式,更多修改的方式请看官网教程
三、如果修改的resnet的网络结构
如果修改了resnet的网络结构,而不仅仅是修改了最后一层全连接层,比如加上注意力机制,而且还是训练自己的数据集,自己的数据集假如有10个类别,那么就得用以下方式加载预训练模型:
model_ft = models.resnet18(pretrained=False)
net_dict = model_ft.state_dict()
predict_model = torch.load('resnet18-5c106cde.pth')
state_dict = {k: v for k, v in predict_model.items() if k in net_dict.keys()}# 寻找网络中公共层,并保留预训练参数
net_dict.update(state_dict) # 将预训练参数更新到新的网络层
model_ft.load_state_dict(net_dict)
# 修改最后一层全连接层的数量,改为分类种类的数量
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)