计算机模拟圣彼得堡游戏

本文通过计算机模拟圣彼得堡游戏,探讨顾客参与数与奖金均值的关系,以及奖金上限对期望值的影响。实验表明,奖金均值不受参与数影响,与奖金上限呈指数相关。此外,游戏执行次数的增加会导致达到奖金上限的顾客数量线性增长,增加商家风险。
摘要由CSDN通过智能技术生成

 

计算机模拟圣彼得堡游戏下数学期望的分析

 

在介绍圣彼得堡游戏之前我们先介绍一个生活中较为常见的试验:伯努利试验。

伯努利试验是在同样的条件下重复地、相互独立地进行的一种随机试验,其中“在相同条件下”意在说明:每一次试验的结果不会受其它实验结果的影响,事件之间相互独立。显然,抛硬币试验属于伯努利试验。

抛硬币操作的每一次进行条件都不会改变,但一次抛硬币试验进行多少次抛硬币操作的决定权却是由试验人控制的。那么现在假设试验人依据上一次抛硬币操作的结果来决定是否进行下一次操作,即让抛硬币操作之间产生多米诺效应。例如如果抛硬币的结果是反面,则进行下一次抛硬币操作,这样的连锁的抛硬币试验已经不能称为伯努利试验。如果给每一次操作结果赋予一个特定的奖励,这样的试验就被称为圣彼得堡游戏。

圣彼得堡游戏:设定掷出正面或者反面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。

 

1 引出案例

为了方便计算机模拟实验,我们将圣彼得堡游戏做了如下改编:

现有一商家为促销向消费客户提供了如下游戏:连续抛一枚硬币,直到出现正面为止,记抛硬币的次数为N,当正面出现时,游戏结束,客户可以获得2N元的奖励。

试问:

(1)顾客参与数(游戏执行次数)对游戏期望值和商家的影响。

(2)若商家为了保险起见,规定奖金最大值为x,分析奖金上限值对游戏期望值的影响。

 

2 计算期望值

第一次抛硬币出现正面的概率为(1/2)1,相应获得的奖金为2元。

直到第二次抛硬币才出现正面的概率为(1/2)2,相应获得的奖金为22元。

直到第二次抛硬币才出现正面的概率为(1/2)3,相应获得的奖金为23元。

……

直到第N次抛硬币才出现正面的概率为(1/2)N,相应获得的奖金为2N元。

根据期望值的定义,显然期望值并不会因为实验次数的增长而改变,那么顾客参与数对商家究竟有没有影响?

数学期望

E(A­1)=21*(1/2)1+22*(1/2)2+23*(1/2)3+……+2N*(1/2)N=N

理论上N趋向于正无穷,故是否E(A)=+∞?如果该游戏的期望值真的为正无穷,那么商家将面临的是倾家荡产!

当商家规定了奖金上限值x后,不妨令x=2i元,此时数学期望:

E(A2)=21*(1/2)1+22*(1/2)2+23*(1/2)3+……+2i-1*(1/2)i-1+2i-1*(1/2)i=i+1

即当奖金上限x=1024元时,奖金期望值为11元;x=32768元时,奖金期望值为16元。理论上当奖金上限为一千亿时,奖金期望值也只有36.54元。正如Hacking(1980)所说:“没有人愿意花25元去参加一次这样的游戏。

 

3 计算机模拟实验原理

为了检验上述理论计算期望值结果的正确性,可设计一个计算机程序来进行模拟游戏过程。记单次游戏中抛硬币的次数为n,则此次游戏奖金为2n,记为m,用计算机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值