自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

翻译 二十四、伦理与负责任的AI

我们需要确保这些团体在我们的AI中被纳入了并进行了正确的处理。这包括需要确保我们始终清楚的了解正在使用的AI。我们需要确保我们理解人工智能决策的责任在哪里。我们需要记得我们的模型是基于哪些数据训练的。或者可以做出它的开发者无法预料到的决定。我们经常看到AI对人类构成危险的故事。这可能是因使用带偏差的数据训练导致的。因为当我们处理并未被完全代表的团体时。我们收集的大多数数据都可能是有偏差的。我们希望将人类纳入做重大决策的环节中。并训练模型来复制人类某些方面的行为。我们在做决策的时候需要考虑到这一点。

2025-02-11 08:49:36 51

翻译 二十三、多智能体系统(Multi-Agent Systems)

模拟器在理解由遵循相同或相似的逻辑的独立个体组成的复杂系统的行为方式中非常有效。展示了在有交通灯和没有交通灯情况下的一维和二维网格的城市交通模型。它可以架构成智能体能够在环境中应用于特定情景的知识库或者规则列表。以及介绍了多智能系统的简要历史和它们不同的使用场景。它们采用某种类型的算法对环境中的变化作出反应。因为不同的命令使用不同的形式以增强清晰度。这由代码中类似于以下的相应的处理程序处理。展示了烟花如何由独立的火流的集体行为组成。一种能够发现不同的智能体能够做什么的方法。

2025-02-11 08:47:47 639

翻译 二十二、深度强化学习(Deep Reinforcement Learning)

强化学习RL))被当作基础机器学习范式之一与监督学习无监督学习并列。在监督学习中我们依赖于已经知道结果的数据集而强化学习基于“”的原则。例如当我们第一次玩到某个电脑游戏我们开始玩时甚至还不了解游戏规则我们通过玩游戏的过程以及调整我们的行为很快我们能提升我们的技巧。要执行强化学习RL),我们需要设定了游戏规则的或者),我们可以在模拟器上进行实验并观察结果。一些奖励函数用来标记我们的实验的成功程度。以学习玩电脑游戏为例奖励函数是最终游戏分数。

2025-02-11 08:47:17 64

翻译 二十一、遗传算法

它讲解了计算机如何基于遗传算法训练的神经网络学习玩超级马里奥。这个领域的灵感来自于将心理学与计算机科学结合起来的研究。我们将学习更多关于计算机学习玩类似游戏的知识。它利用种群进化的原理来获得给定问题的最优解。则使用交叉后代基因g替代基因集中相应的基因。操作可以将两个解组合得到一个新的可行解。遗传算法通常用于解决以下类型的任务。查看使用遗传算法解决两个问题的样例。找到诸如数独谜题的遗传算法的实现。将两个基因组合成一个新的可行解。您的目标是解决所谓的丢番图方程。编码我们的问题解决方案的方法。

2025-02-11 08:47:07 224

翻译 二十、预训练大语言模型

事实证明大语言模型即使没有任何特定领域的训练也能完成许多任务。我们都是使用标记好了的数据集训练神经网络来执行特定的任务。然后通过进一步的训练特定领域的训练专门用于特定的下游任务。神经网络能够无需下游训练就能完成常规任务的想法已经在论文。下一个单词的无条件等于这个单词在文本集中出现的频率。提示工程(Prompt Engineering)因为模型是基于巨量的包含人类知识的文本而训练的。新的通用预训练语言模型不仅仅可以模拟语言结构。允许我们在没有任何特定任务数据集的情况下。它也对各种各样的主题都有丰富的了解。

2025-02-11 08:46:51 19

翻译 十九、命名实体识别(Named Entity Recognition/NER)

智能聊天机器人的工作原理是通过对输入的语句进行文本分类以理解用户想要什么。以下代码笔记中的示例展示了如何训练LSTM进行词元(token。因为我们需要在token和类别之间简历一对一的对应关系。我们可以训练一个最下图的右边的多对多的神经网络模型。并遵循这篇文章中的“进一步阅读”部分加深您的知识。我们可以使用我们熟悉的RNN模型来完成这个任务。我们需要查找的主要内容之一是特定的医学术语。您可以从训练一个这节课中描述的LSTM开始。训练一个用于识别医疗术语的NER模型。一个确定第一个token的实体。

2025-02-11 08:46:06 53

翻译 十八、注意力机制和(Attention Mechanisms) 和Transformer模型

提供了一种RNN在预测中衡量每个输入向量对每个输出的上下文影响的加权平均值的方法。代表了输入序列中具体某个单词在生成输出序列中的给定单词时所起的作用程度。这是通过在输入RNN和输出RNN的中间状态之间创建快捷方式实现的。我们使用多头注意力使得网络具有捕获多个不同类型的依赖关系的能力。输入序列中的某些特定的单词通常比其他单词对输出序列的影相更大。解码器注意力与本节开始的时候描述的RNN的注意力机制非常相似。该机制的本质是将注意力应用于一个同时作为输入和输出的序列。序列中的所有单词对结果都具有相同的影响力。

2025-02-11 08:45:39 20

翻译 十七、生成网络

如果我们总是选择具有最高出现概率的字符作为生成文本中的下一个字符。我们首先使用RNN中的输入序列中所有信息收集到隐藏状态向量。回想一下您在键入时的文本补全等生成式任务中的所有受益情况。如果我们想训练一个生成图片的文本描述的图像描述网络。那生成的文本通常会变成在相同的字符序列之间不同循环。因为选择第二高概率的字符可能使我们得到有意义的文本。来自编码器的状态向量用于生成或者解码翻译的消息。我们已经学习了如何一个字符一个字符的生成文本。我们将聚焦于帮我们生成文本的简单的生成模型。

2024-06-29 23:10:09 75

翻译 十六、循环神经网络(Recurrent Neural Networks)

因为在embeddings之上的聚合操作移除了单词在原始文本中的顺序信息。以及embeddings之上的一个简单的线性分类器。我们可以在第一个循环层的顶层再构建另一个循环层。因此相同的结构能够使用一个带循环反馈回路的块。让我们看看一个简单的的RNN单元是如何组织的。因此网络无法学习两个距离很远的符号之间的关系。这种架构的作用是捕获单词在句子里的组合语义。因此在两个方向上执行循环计算可能是有意义的。了解LSTM的内部结构的绝佳资源是这篇由。一个简单的RNN单元内部有两个权重矩阵。

2024-06-14 23:29:56 113

翻译 十五、语言模型

语言模型,当我们通过查看前N个词块(token)来预测一个词块(token)时。同时我们应该要能够在必要时训练我们自己的特定领域的文本的单词embeddings。讲述了如何通过gensim框架使用几行代码训练更通用的embeddings。语言模型背后的主要思想是以无监督方式在未标记的数据集上进行训练。现在我们知道了训练单词embeddings并不是很复杂的任务。而已标记的文本始终受限于我们可以用于标记的精力。我们能够构建可以预测文本中缺失单词的语言模型。我们挑战您修改本课中的代码来训练Skip。

2024-06-13 23:43:49 59

翻译 十四、嵌入(Embeddings)

上述预训练embeddings把使用相同的embedding表示单词‘play’的含义。但单词的所有可能含义都被编码进同一个embedding中。我们需要在大量的文本上以特定的方式预训练我们的embedding模型。在这一层我们首先把文本中的每个单词转换为相应的embedding。虽然预训练embeddings能够捕获单词在上下文的一些含义。我们将在稍后讨论如何构建有含义的单词embeddings。基于上下文的embeddings不在本教程的讨论范围。并且能够理解如何在不同的上下文中组合使用词语。

2024-06-13 23:42:49 99

翻译 十三、文本的张量表示

one-hot 编码: one-hot 编码是一种稀疏编码方式,对于一个包含 N 个元素的集合,使用长度为 N 的向量进行表示,只有对应元素的索引位置为 1,其余位置均为 0。”我们将在本课程的后续部分学习如何通过语言模型从文本中捕获上下文信息。我们学习了可以对文本中不同单词的词频赋予权重的技术。我们的目标是将新闻根据文本内容分类成不同的类别。词频在很多情况下可以很好的指示文本内容的含义。一种最简单的实现方法是组合所有单词的表示。在本课的附加代码笔记本中将更详细的介绍它。

2024-06-11 19:30:00 65

翻译 十二、分割(Segmentation)

这些仅仅是分割技术的一些潜在应用示例,随着技术的发展,分割技术在各个领域的应用将会更加广泛。您可以进一步学习这个领域中的实例分割和全景分割这两个子域的相关知识。独热编码是一种将类别标签编码成与长度等于类别数量的向量的方法。例如,整张图片的草地可能被标记为一个单一的"草地"类别。所有的图像都包含一个用于勾勒痣的轮廓的相应的掩码。零件检测:分割产品图像中的瑕疵,用于质量控制。目标掩码图像中的每个像素值代表该点的类别编码。需要特别提到的是分割函数中使用的损失函数。但您还能想象到这种技术在的真实世界的。

2024-06-11 19:00:00 144

翻译 十一、目标检测

第i个召回率插值对应的精确度的计算方法(插值函数(interp))一般为:召回值大于当前召回值插值,且小于下一个召回值插值区间的最大精确度。得分图使用C个类别中的每个类别分别将输入特征分成k*k个区域,同时训练(C层)网络来预测各个子区域的目标分类。也就是模型预测为正样本但实际上是负样本的数量。FN(False Negative):假反例,表示模型错误地将正样本分类为负样本。总而言之,R-FCN 通过采用完全卷积的架构和投票机制,在提升检测速度的同时,基本保持了 Faster R-CNN 的精度水平。

2024-06-10 13:30:02 65

翻译 十、生成对抗网络

在前面章节,我们了解了生成模型(:可以生成与训练集中图像相似的新图像的模型。VAE是一个优秀的生成模型示例。然而,如果我们尝试使用VAE生成一些真正有意义的东西,比如说一幅有合理分辨率的油画,我们将发现训练并不能很好的收敛。在这种情况下,我们需要了解另一种专门用于生成模型的架构-生成对抗模型(),或者说GAN。GAN的主要思想是使用两个神经网络,并让他们进行彼此对抗训练:​图像由提供✅一些术语是一个使用一些随机向量,生成图片的神经网络。

2024-06-06 23:23:57 78

翻译 九、自编码器(Autoencoder)

自编码器的主要思想是,我们使用一个编码器网络,把输入图像转换为某个隐空间(通常它只是一个大小更小的向量),然后是解码器网络,它的目标是重建原始图像。在图片分类的例子中,我们需要将图像分成不同的分类,这是一个手动工作。因为我们训练自编码器是为了尽可能多的从原始图像中提取信息以准确重建图像,神经网络尝试找到输入图片的最佳“我们从高分辨率图像开始,并使用低分辨率图像作为自编码器的输入。通常自编码器的结果比PCA好,因为它考虑了图像的空间特性和分层特征。然后使用人为添加了噪声的图像作为自编码器的输入。

2024-06-06 23:02:27 80

翻译 八、(二)深度学习训练技巧

随着神将网络深度增加,其训练过程变得越来越具有挑战性。一个做主要的问题是所谓的或者梯度爆炸。很好的介绍了这些问题。为了使深度网络训练更有效,有一些技术可以使用。

2024-06-04 21:45:49 94

翻译 八、(一)预训练网络与迁移学习

使用迁移学习您可以快速组建一个具有高准确率的用于自定义对象分类任务的分类器。您可以看到我们正在解决的问题越复杂我们需要的算力越高并且在CPU上并不容易解决。在下一个单元我们将尝试使用一个更轻量级更少计算资源的实现方式来训练相同的模型结果只会略微低降低一些准确度。挑战在附带的笔记中在底部有说明如何将迁移知识最好的适用略微相似的训练数据也许是新类型的动物在完全不同的图像上实验看看您的知识迁移模型表现得好还是差。课后练习复习和自学通读。

2024-06-01 23:59:30 110

翻译 七、卷积神经网络

在这个单元你学习了计算机视觉神经网络背后的主要概念卷积网络。现实生活中支持图像分类物体检测甚至图像生成的网络都是基于CNN架构只是具有更多层或者使用了额外的训练技巧。

2024-06-01 23:11:46 72

翻译 六、计算机视觉介绍

有时,相对复杂的任务,比如说运动检测或者指尖检测,可以纯粹通过计算机视觉解决。所以,了解计算机视觉的一些基本技术,以及像OpenCV等库能做什么非常有帮助。

2024-05-29 20:46:15 80

翻译 五、PyTorch、tensorflow框架介绍以及过拟合

在这节课程中您学习了最流行的两个AI框架TensorFlow和PyTorch的各种API之间的差异。另外您学习了一个非常重要的主题过拟合。

2024-05-26 16:58:13 74

翻译 四、神经网络介绍:多层感知器

在这节课我们构建我们自己的神经网络库同时我们在一个简单的二维分类任务中使用了它。

2024-05-16 22:54:31 91

翻译 三、神经网络简介: 感知器(Perceptron)

下一章:多层感知器、创建您自己的框架首批尝试实现类似现代化的神经网络之一的是康奈尔航空实验室的弗兰克·罗森布拉特于1957年完成的。它是一个被称作“Mark-1的硬件实现的旨在识别原始几何图形比如说三角形正方形圆形。图片摘自输入图片由20*20的光电管阵列表示所以神经网络有400个输入以及1个二进制位的输出。一个简单的网络包含一个神经元也被称作为阈值逻辑单元。神经网络的权重就像电位器一样在训练期间需要手动调整。✅。

2024-05-13 21:37:19 466

翻译 二、知识表示(Knowledge Representation)和专家系统

下一章:感知器速写笔记由绘制探索人工智能是基于对知识的检索,以类似于人类的方式来理解世界。我们要如何实现这一点呢?早期的人工智能领域,基于自上而下的方法创建智能系统(在上一课有讨论)是非常流行的。实现方式就是从人类那里将知识提取成计算机可识别的形式,再利用它来自动解决问题。这种方法基于两个重要思想:知识表达推理。

2024-05-12 20:04:43 894

翻译 一、人工智能简介

关于“智能”这个术语的一个重要问题是没有一个关于这个术语的清晰的定义。人们可以说智能与抽象思维或者自我意识有关但是我们无法准确定义它。由Amber Kipp在Unsplash拍摄要了解“智能”一词的歧义请尝试回答一个问题“猫是否有智能?”不同的人往往会对给出不同的答案因为没有一个普遍接受的测试来证明这个断言是否正确。如果你认为有请尝试让你的猫进行智力测试...✅想一想你如何定义智能。能通过迷宫并找到食物的乌鸦是否有“智能”?小孩子是否有“智能”。

2024-05-06 23:33:18 145

翻译 人工智能入门课程(Artificial Intelligence for Beginners - A Curriculum)

人工智能入门简图由提供通过微软开发的学习周期12周,24节课的课程探索人工智能(AI)世界!深入了解符号人工智能),神经网络计算机视觉自然语言处理),等等。课程中每一课时中的动手实践内容测验和实验将增强您的学习效果。这门课程由专家设计是初学者的完美指南,内容涵盖了TensorFlowTensorFlow和AI伦理规则。立即开始您的人工智能AI学习旅程!在这个课程您将学习到人工智能的不同的实现方法包括使用知识表达。

2024-05-05 09:10:24 286

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除