- 博客(19)
- 收藏
- 关注
翻译 十七、生成网络
如果我们总是选择具有最高出现概率的字符作为生成文本中的下一个字符。我们首先使用RNN中的输入序列中所有信息收集到隐藏状态向量。回想一下您在键入时的文本补全等生成式任务中的所有受益情况。如果我们想训练一个生成图片的文本描述的图像描述网络。那生成的文本通常会变成在相同的字符序列之间不同循环。因为选择第二高概率的字符可能使我们得到有意义的文本。来自编码器的状态向量用于生成或者解码翻译的消息。我们已经学习了如何一个字符一个字符的生成文本。我们将聚焦于帮我们生成文本的简单的生成模型。
2024-06-29 23:10:09 29
翻译 十六、循环神经网络(Recurrent Neural Networks)
因为在embeddings之上的聚合操作移除了单词在原始文本中的顺序信息。以及embeddings之上的一个简单的线性分类器。我们可以在第一个循环层的顶层再构建另一个循环层。因此相同的结构能够使用一个带循环反馈回路的块。让我们看看一个简单的的RNN单元是如何组织的。因此网络无法学习两个距离很远的符号之间的关系。这种架构的作用是捕获单词在句子里的组合语义。因此在两个方向上执行循环计算可能是有意义的。了解LSTM的内部结构的绝佳资源是这篇由。一个简单的RNN单元内部有两个权重矩阵。
2024-06-14 23:29:56 75
翻译 十五、语言模型
语言模型,当我们通过查看前N个词块(token)来预测一个词块(token)时。同时我们应该要能够在必要时训练我们自己的特定领域的文本的单词embeddings。讲述了如何通过gensim框架使用几行代码训练更通用的embeddings。语言模型背后的主要思想是以无监督方式在未标记的数据集上进行训练。现在我们知道了训练单词embeddings并不是很复杂的任务。而已标记的文本始终受限于我们可以用于标记的精力。我们能够构建可以预测文本中缺失单词的语言模型。我们挑战您修改本课中的代码来训练Skip。
2024-06-13 23:43:49 32
翻译 十四、嵌入(Embeddings)
上述预训练embeddings把使用相同的embedding表示单词‘play’的含义。但单词的所有可能含义都被编码进同一个embedding中。我们需要在大量的文本上以特定的方式预训练我们的embedding模型。在这一层我们首先把文本中的每个单词转换为相应的embedding。虽然预训练embeddings能够捕获单词在上下文的一些含义。我们将在稍后讨论如何构建有含义的单词embeddings。基于上下文的embeddings不在本教程的讨论范围。并且能够理解如何在不同的上下文中组合使用词语。
2024-06-13 23:42:49 42
翻译 十三、文本的张量表示
one-hot 编码: one-hot 编码是一种稀疏编码方式,对于一个包含 N 个元素的集合,使用长度为 N 的向量进行表示,只有对应元素的索引位置为 1,其余位置均为 0。”我们将在本课程的后续部分学习如何通过语言模型从文本中捕获上下文信息。我们学习了可以对文本中不同单词的词频赋予权重的技术。我们的目标是将新闻根据文本内容分类成不同的类别。词频在很多情况下可以很好的指示文本内容的含义。一种最简单的实现方法是组合所有单词的表示。在本课的附加代码笔记本中将更详细的介绍它。
2024-06-11 19:30:00 28
翻译 十二、分割(Segmentation)
这些仅仅是分割技术的一些潜在应用示例,随着技术的发展,分割技术在各个领域的应用将会更加广泛。您可以进一步学习这个领域中的实例分割和全景分割这两个子域的相关知识。独热编码是一种将类别标签编码成与长度等于类别数量的向量的方法。例如,整张图片的草地可能被标记为一个单一的"草地"类别。所有的图像都包含一个用于勾勒痣的轮廓的相应的掩码。零件检测:分割产品图像中的瑕疵,用于质量控制。目标掩码图像中的每个像素值代表该点的类别编码。需要特别提到的是分割函数中使用的损失函数。但您还能想象到这种技术在的真实世界的。
2024-06-11 19:00:00 58
翻译 十一、目标检测
第i个召回率插值对应的精确度的计算方法(插值函数(interp))一般为:召回值大于当前召回值插值,且小于下一个召回值插值区间的最大精确度。得分图使用C个类别中的每个类别分别将输入特征分成k*k个区域,同时训练(C层)网络来预测各个子区域的目标分类。也就是模型预测为正样本但实际上是负样本的数量。FN(False Negative):假反例,表示模型错误地将正样本分类为负样本。总而言之,R-FCN 通过采用完全卷积的架构和投票机制,在提升检测速度的同时,基本保持了 Faster R-CNN 的精度水平。
2024-06-10 13:30:02 29
翻译 十、生成对抗网络
在前面章节,我们了解了生成模型(:可以生成与训练集中图像相似的新图像的模型。VAE是一个优秀的生成模型示例。然而,如果我们尝试使用VAE生成一些真正有意义的东西,比如说一幅有合理分辨率的油画,我们将发现训练并不能很好的收敛。在这种情况下,我们需要了解另一种专门用于生成模型的架构-生成对抗模型(),或者说GAN。GAN的主要思想是使用两个神经网络,并让他们进行彼此对抗训练:图像由提供✅一些术语是一个使用一些随机向量,生成图片的神经网络。
2024-06-06 23:23:57 33
翻译 九、自编码器(Autoencoder)
自编码器的主要思想是,我们使用一个编码器网络,把输入图像转换为某个隐空间(通常它只是一个大小更小的向量),然后是解码器网络,它的目标是重建原始图像。在图片分类的例子中,我们需要将图像分成不同的分类,这是一个手动工作。因为我们训练自编码器是为了尽可能多的从原始图像中提取信息以准确重建图像,神经网络尝试找到输入图片的最佳“我们从高分辨率图像开始,并使用低分辨率图像作为自编码器的输入。通常自编码器的结果比PCA好,因为它考虑了图像的空间特性和分层特征。然后使用人为添加了噪声的图像作为自编码器的输入。
2024-06-06 23:02:27 38
翻译 八、(二)深度学习训练技巧
随着神将网络深度增加,其训练过程变得越来越具有挑战性。一个做主要的问题是所谓的或者梯度爆炸。很好的介绍了这些问题。为了使深度网络训练更有效,有一些技术可以使用。
2024-06-04 21:45:49 46
翻译 八、(一)预训练网络与迁移学习
使用迁移学习您可以快速组建一个具有高准确率的用于自定义对象分类任务的分类器。您可以看到我们正在解决的问题越复杂我们需要的算力越高并且在CPU上并不容易解决。在下一个单元我们将尝试使用一个更轻量级更少计算资源的实现方式来训练相同的模型结果只会略微低降低一些准确度。挑战在附带的笔记中在底部有说明如何将迁移知识最好的适用略微相似的训练数据也许是新类型的动物在完全不同的图像上实验看看您的知识迁移模型表现得好还是差。课后练习复习和自学通读。
2024-06-01 23:59:30 53
翻译 七、卷积神经网络
在这个单元你学习了计算机视觉神经网络背后的主要概念卷积网络。现实生活中支持图像分类物体检测甚至图像生成的网络都是基于CNN架构只是具有更多层或者使用了额外的训练技巧。
2024-06-01 23:11:46 36
翻译 六、计算机视觉介绍
有时,相对复杂的任务,比如说运动检测或者指尖检测,可以纯粹通过计算机视觉解决。所以,了解计算机视觉的一些基本技术,以及像OpenCV等库能做什么非常有帮助。
2024-05-29 20:46:15 42
翻译 五、PyTorch、tensorflow框架介绍以及过拟合
在这节课程中您学习了最流行的两个AI框架TensorFlow和PyTorch的各种API之间的差异。另外您学习了一个非常重要的主题过拟合。
2024-05-26 16:58:13 39
翻译 三、神经网络简介: 感知器(Perceptron)
下一章:多层感知器、创建您自己的框架首批尝试实现类似现代化的神经网络之一的是康奈尔航空实验室的弗兰克·罗森布拉特于1957年完成的。它是一个被称作“Mark-1的硬件实现的旨在识别原始几何图形比如说三角形正方形圆形。图片摘自输入图片由20*20的光电管阵列表示所以神经网络有400个输入以及1个二进制位的输出。一个简单的网络包含一个神经元也被称作为阈值逻辑单元。神经网络的权重就像电位器一样在训练期间需要手动调整。✅。
2024-05-13 21:37:19 132
翻译 二、知识表示(Knowledge Representation)和专家系统
下一章:感知器速写笔记由绘制探索人工智能是基于对知识的检索,以类似于人类的方式来理解世界。我们要如何实现这一点呢?早期的人工智能领域,基于自上而下的方法创建智能系统(在上一课有讨论)是非常流行的。实现方式就是从人类那里将知识提取成计算机可识别的形式,再利用它来自动解决问题。这种方法基于两个重要思想:知识表达推理。
2024-05-12 20:04:43 358
翻译 一、人工智能简介
关于“智能”这个术语的一个重要问题是没有一个关于这个术语的清晰的定义。人们可以说智能与抽象思维或者自我意识有关但是我们无法准确定义它。由Amber Kipp在Unsplash拍摄要了解“智能”一词的歧义请尝试回答一个问题“猫是否有智能?”不同的人往往会对给出不同的答案因为没有一个普遍接受的测试来证明这个断言是否正确。如果你认为有请尝试让你的猫进行智力测试...✅想一想你如何定义智能。能通过迷宫并找到食物的乌鸦是否有“智能”?小孩子是否有“智能”。
2024-05-06 23:33:18 59
翻译 人工智能入门课程(Artificial Intelligence for Beginners - A Curriculum)
人工智能入门简图由提供通过微软开发的学习周期12周,24节课的课程探索人工智能(AI)世界!深入了解符号人工智能),神经网络计算机视觉自然语言处理),等等。课程中每一课时中的动手实践内容测验和实验将增强您的学习效果。这门课程由专家设计是初学者的完美指南,内容涵盖了TensorFlowTensorFlow和AI伦理规则。立即开始您的人工智能AI学习旅程!在这个课程您将学习到人工智能的不同的实现方法包括使用知识表达。
2024-05-05 09:10:24 111
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人