Deep Residual Learning for Image Recognition
Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
参考文献和链接:
Deep Residual LearnDeep Residual Learning for Image Recognition, He-Kaiming, 2015
https://www.jianshu.com/p/93990a641066
https://blog.csdn.net/mao_feng/article/details/52734438
https://zhuanlan.zhihu.com/p/129833754
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_inplanes():
return [64, 128, 256, 512]
def conv3x3x3(in_planes, out_planes, stride=1):
return nn.Conv3d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
def conv1x1x1(in_planes, out_planes, stride=1):
return nn.Conv3d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, downsample=None):
super().__init__()
self.conv1 = conv3x3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, downsample=None