ResNet网络论文阅读笔记和3D ResNet的pytorch代码

这篇博客介绍了Deep Residual Learning在图像识别领域的应用,主要探讨了He et al. (2015)的工作,包括ResNet的基本模块(BasicBlock和Bottleneck)、网络结构设计和实例模型如resnet10到resnet152的实现。作者还分享了初始化权重的方法和关键函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
参考文献和链接:
Deep Residual LearnDeep Residual Learning for Image Recognition, He-Kaiming, 2015
https://www.jianshu.com/p/93990a641066
https://blog.csdn.net/mao_feng/article/details/52734438
https://zhuanlan.zhihu.com/p/129833754

import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F



def get_inplanes():
    return [64, 128, 256, 512]


def conv3x3x3(in_planes, out_planes, stride=1):
    return nn.Conv3d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)


def conv1x1x1(in_planes, out_planes, stride=1):
    return nn.Conv3d(in_planes,
                     out_planes,
                     kernel_size=1,
                     stride=stride,
                     bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, downsample=None):
        super().__init__()

        self.conv1 = conv3x3x3(in_planes, planes, stride)
        self.bn1 = nn.BatchNorm3d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3x3(planes, planes)
        self.bn2 = nn.BatchNorm3d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_planes, planes, stride=1, downsample=None
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值