1001 数组中和等于K的数对

版权声明:如有错误,请指出,不胜感激。 https://blog.csdn.net/qq_36424540/article/details/72810505

给出一个整数K和一个无序数组A,A的元素为N个互不相同的整数,找出数组A中所有和等于K的数对。例如K = 8,数组A:{-1,6,5,3,4,2,9,0,8},所有和等于8的数对包括(-1,9),(0,8),(2,6),(3,5)。

Input
第1行:用空格隔开的2个数,K N,N为A数组的长度。(2 <= N <= 50000,-10^9 <= K <= 10^9)
第2 - N + 1行:A数组的N个元素。(-10^9 <= A[i] <= 10^9)
Output
第1 - M行:每行2个数,要求较小的数在前面,并且这M个数对按照较小的数升序排列。
如果不存在任何一组解则输出:No Solution。
Input示例
8 9
-1
6
5
3
4
2
9
0
8
Output示例
-1 9
0 8
2 6
3 5

一开始没有二分查找,导致超时,想想也是,之前的代码有重复判断的地方,确实浪费了时间
正解:

#include<stdio.h>
#include<algorithm>
typedef long long ll;
using namespace std;
int main(){
    ll a[50005];
    int i,j,k,n,flag=1;
    scanf("%d%d",&k,&n);
    for(i=0;i<n;i++){
        scanf("%lld",&a[i]);
    }
    sort(a,a+n);
    j=n-1;
    for(i=0;i<n;i++){
        while(i<j&&a[i]+a[j]>k)//由于已经排序,所以只需要考虑大于k的时候,这时减小j(就像是不断地取长“补”短,找好那个长,最长的话,和最短的都不行,只能放弃了,然后不断地减小,这样本来O(n^2)就变成了O(n))。不满足条件的时候,说明相等了,或者i,j已经相等了,结束了
            j--;
        if(a[i]+a[j]==k&&i<j){
            printf("%lld %lld\n",a[i],a[j]);
            flag=0;
            continue; 
        }
    }
    if(flag)
        printf("No Solution\n");
    return 0;
} 

不太对的解:O(n^2)

#include<stdio.h>
#include<algorithm>
typedef long long ll;
using namespace std;
int main(){
    ll a[50005];
    int i,j,k,n,flag=1;
    scanf("%d%d",&k,&n);
    for(i=0;i<n;i++){
        scanf("%lld",&a[i]);
    }
    sort(a,a+n);
    for(i=0;i<n;i++){   
        for(j=i+1;j<n;j++){
            if(a[j]+a[i]==k){
                printf("%lld %lld\n",a[i],a[j]);
                flag=0;
                break;
            }
        }
    } 
    if(flag)
        printf("No Solution\n");
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页