动态规划之01背包,完全背包,多重背包

01背包

01背包问题,是用来介绍动态规划算法最经典的例子。

01背包的转换方程 f[i][j] = Max{ f[i-1][j-Wi]+Pi( j >= Wi ),  f[i-1][ j ] }

f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。

Pi表示第i件物品的价值。
决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?(0/1的选择)

题目描述:

有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

nameweightvalue12345678910
a26066991212151515
b23033669991011
c65000666661011
d54000666661010
e460006666666

只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是自上向下,从左到右生成的。(也可以从上往下,只是为了便于观察,理解)

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?

根据01背包的状态转换方程,需要考察两个值,

一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;

在这里,

 f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6

由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包

    #include<iostream>  
    using namespace std;  
    #define  V 1500  
    unsigned int f[10][V];//全局变量,自动初始化为0  
    unsigned int weight[10];  
    unsigned int value[10];  
    #define  max(x,y)   (x)>(y)?(x):(y)  
    int main()  
    {  
          
        int N,M;  
        cin>>N;//物品个数  
        cin>>M;//背包容量  
        for (int i=1;i<=N; i++)  
        {  
            cin>>weight[i]>>value[i];  
        }  
        for (int i=1; i<=N; i++)  
            for (int j=1; j<=M; j++)  
            {  
                if (weight[i]<=j)  
                {  
                    f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);  
                }  
                else  
                    f[i][j]=f[i-1][j];  
            }  
          
        cout<<f[N][M]<<endl;//输出最优解  
      
    }  


可以进一步优化内存使用。上面计算f[i][j]可以看出,在计算f[i][j]时只使用了f[i-1][0……j],没有使用其他子问题,因此在存储子问题的解时,只存储f[i-1]子问题的解即可。这样可以用两个一维数组解决,一个存储子问题,一个存储正在解决的子问题。

再进一步思考,计算f[i][j]时只使用了f[i-1][0……j],没有使用f[i-1][j+1]这样的话,我们先计算j的循环时,让j=M……1,只使用一个一维数组即可。

for i=1……N

for j=M……1

f[j]=max(f[j],f[j-weight[i]+value[i])


[cpp] view plain copy

    #include<iostream>  
    using namespace std;  
    #define  V 1500  
    unsigned int f[V];//全局变量,自动初始化为0  
    unsigned int weight[10];  
    unsigned int value[10];  
    #define  max(x,y)   (x)>(y)?(x):(y)  
    int main()  
    {  
          
        int N,M;  
        cin>>N;//物品个数  
        cin>>M;//背包容量  
        for (int i=1;i<=N; i++)  
        {  
            cin>>weight[i]>>value[i];  
        }  
        for (int i=1; i<=N; i++)  
            for (int j=M; j>=1; j--)  
            {  
                if (weight[i]<=j)  
                {  
                    f[j]=max(f[j],f[j-weight[i]]+value[i]);  
                }             
            }  
          
        cout<<f[M]<<endl;//输出最优解  
      
    }  

完全背包

在看完01背包问题,再来看完全背包问题:一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],每个物品都有无限多件,现在往背包里面装东西,怎么装能使背包的内物品价值最大?

对比一下,看到的区别是,完全背包问题中,物品有无限多件。往背包里面添加物品时,只要当前背包没装满,可以一直添加。那么状态转移方程为:

f[i+1][j]=max(f[i][j-k*weight[i+1]]+k*value[i+1]),其中0<=k<=V/weight[i+1]

使用内存为一维数组,伪代码

for i=1……N

for j=1……M

f[j]=max(f[j],f[j-weight[i]+value[i])

和01背包问题唯一不同的是j是从1到M。01背包问题是在前一个子问题(i-1 物品)的基础上来解决当前问题(i 物品),向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品),向i种物品时的背包添加第i种物品。

代码如下:

    #include<iostream>  
    using namespace std;  
    #define  V 1500  
    unsigned int f[V];//全局变量,自动初始化为0  
    unsigned int weight[10];  
    unsigned int value[10];  
    #define  max(x,y)   (x)>(y)?(x):(y)  
    int main()  
    {  
          
        int N,M;  
        cin>>N;//物品个数  
        cin>>M;//背包容量  
        for (int i=1;i<=N; i++)  
        {  
            cin>>weight[i]>>value[i];  
        }  
        for (int i=1; i<=N; i++)  
            for (int j=1; j<=M; j++)  
            {  
                if (weight[i]<=j)  
                {  
                    f[j]=max(f[j],f[j-weight[i]]+value[i]);  
                }             
            }  
          
        cout<<f[M]<<endl;//输出最优解  
      
    }  



多重背包

多重背包问题是0-1背包问题和完全背包问题的综合体,可以描述如下:从n种物品向容积为V的背包装入,其中每种物品的体积为w,价值为v,数量为k,问装入的最大价值总和?

我们知道0-1背包问题是背包问题的基础,所以在解决多重背包问题的时候,要将多重背包向0-1背包上进行转换。在多重背包问题中,每种物品有k个,可以将每种物品看作k种,这样就可以使用0-1背包的算法。但是,这样会增加数据的规模。因为该算法的时间复杂度为O(V*∑ni=1ki),所以要降低每种物品的数量ki。

九度教程上给出了一种方法,将原数量为k的物品拆分成若干组,每一组可看成一件新的物品,其价值和重量为改组中所有物品的价值重量的总和,每组物品包含的原物品个数分别为:1、2、4,...2^n  (k,k*2,k*2^2,k*2^3...)(k=1)。这样就将物品数量大大降低,同时通过对这些若干个原物品组合得到的新物品的不同组合,可以得到0到k之间的任意件物品的价值重量和,所以对所有这些新物品做0-1背包,即可得到多重背包的解。转化之后的时间复杂度为O(V*∑ni=1log2(ki))。

想一想为什么可以把一种物品的数量转换为二进制的这种方式呢?
我们的转换,是为了减少计算的次数,枚举十分浪费时间,所以我们想怎样才能节省时间,还能准确的表示出之前的不同数量呢?我们想到了二进制,1111这就能表达16中情况,所以我们想着把数量转换成二进制的表示,我们的k就是表示每一位的权值,这样的话,我们向上枚举1111....,总会到达这个数,然后我们因为只有1,所以会有剩下的,再另外开出一组来,就好了。想想这些数量的表示,他可以直接对数字进行二进制的表示,这样就大大降低了要计算的数量。


 背包九讲网址

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值