动态规划——多重背包问题

多重背包问题:

给定一个有一定容量的背包,和n个物品,每个物品有si件。

每个物品有其对应的体积和价值。

问背包最多能装下的物品的最大价值为多少。

输入格式:

第一行两个整数,N,V,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi 用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式:

输出一个整数,表示最大价值。

思路:

每件物品的数量是有限的,并且各不相同。我们并不能和完全背包问题一样优化。

如果数据范围比较小,那我们在01背包的基础上加上第三重循环(枚举选几件该物品)。所以可以将01背包当做特殊的多重背包来处理。

代码如下:

//一维
#include<iostream>
using namespace std;

const int N = 110;
int f[N][N];
int n, m;//n件物品,容量是m

int main() {
    cin >> n >> m;

    int v, w, s;
    for (int i = 1; i <= n; i++) {
        cin >> v >> w >> s;

        for (int j = 0; j <= m; j++) {
            f[i][j] = f[i - 1][j];//不选
            for (int k = 0; k <= s; k++)//选k件
                if (k * v <= j)f[i][j] = max(f[i][j], f[i - 1][j - k * v] + k * w);
        }
    }

    cout << f[n][m];

    return 0;
}

//一维
#include<iostream>
using namespace std;

const int N = 110;
int f[N];
int n, m;//n件物品,容量是m

int main() {
    cin >> n >> m;

    int v, w, s;
    for (int i = 1; i <= n; i++) {
        cin >> v >> w >> s;

        for (int j = m; j >= v; j--) {
            for (int k = 0; k <= s; k++)//选k件
                if (k * v <= j)f[j] = max(f[j], f[j - k * v] + k * w);
        }
    }

    cout << f[m];

    return 0;
}

二进制优化: 

​​​​​​​
我们将每一类物品打包成2^0、2^1、2^2...这样的logn堆物品。将这些物品进行组合就可以组合出1~n内的任何数量的该物品。也就是将所有分好的堆进行01背包处理就可以枚举出所有情况。那么我们就将枚举选几个物品的O(n)复杂度优化成了枚举logn个物品的O(logn)复杂度。

代码如下:
 

#include<iostream>
using namespace std;

const int N = 2010;
int f[N];
int w[N * N], v[N * N], cnt = 0;//最多1000*logn堆物品
int n, V;

int main() {
    cin >> n >> V;

    int v1, w1, s;
    for (int i = 0; i < n; i++) {//打包
        cin >> v1 >> w1 >> s;
        int k = 1;
        while (s) {
            if (s >= k) {
                v[cnt] = k * v1;
                w[cnt++] = k * w1;
                s -= k;
            }
            else {
                v[cnt] = s * v1;
                w[cnt++] = s * w1;
                s = 0;
            }
            k *= 2;
        }
    }

    for (int i = 0; i <= cnt; i++)//01背包
        for (int j = V; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[V];
    return 0;
}

例题:

 庆功会:

为了庆贺班级在校运动会上取得全校第一名成绩,班主任决定开一场庆功会,为此拨款购买奖品犒劳运动员。

期望拨款金额能购买最大价值的奖品,可以补充他们的精力和体力。

每个物品都有价格、价值和数量三个参数。

求最大价值是多少。

输入格式:

第一行二个数n,m,其中n代表希望购买的奖品的种数,m表示拨款金额。

接下来n行,每行3个数,v、w、s,分别表示第I种奖品的价格、价值和能购买的最大数量。

思路:

多重背包裸题,默写多重背包模板即可。

代码如下:

#include<iostream>
using namespace std;

const int N = 6010;
int v[N], w[N], cnt = 0;
int f[N];
int n, V;

int main() {
    cin >> n >> V;

    int v1, w1, s;
    for (int i = 0; i < n; i++) {
        cin >> v1 >> w1 >> s;
        int k = 1;
        while (s) {
            if (s >= k) {
                v[cnt] = k * v1;
                w[cnt++] = k * w1;
                s -= k;
            }
            else {
                v[cnt] = s * v1;
                w[cnt++] = s * w1;
                s = 0;
            }
            k *= 2;
        }
    }

    for (int i = 0; i < cnt; i++)
        for (int j = V; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[V];

    return 0;
}

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

如何何何

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值