标题:测试次数
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。
如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n
为了减少测试次数,从每个厂家抽样3部手机参加测试。
某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
注意:需要填写的是一个整数,不要填写任何多余内容。
答案:19
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,b) for(int i=a;i<b;++i)
#define per(i,a,b) for(int i=b-1;i>=a;--i)
const int N=1010;
int dp[N][10];//dp[i][j] 表示j个球,能测出 i层内所有耐摔度 的 最小值
int main()
{
int n,m;
while(scanf("%d %d",&n,&m)==2) {
for(int i=1;i<=n;i++)dp[i][1]=i;
//for(int i=1;i<=m;i++)dp[0][i]=0;
for(int j=2; j<=m; j++) {
for(int i=1; i<=n; i++) {
dp[i][j]=dp[i][j-1];
for(int k=1; k<=i; k++) {
int t=max(1+dp[k-1][j-1],1+dp[i-k][j]);
dp[i][j]=min(dp[i][j],t);
}
//printf("i:%d j:%d dp:%d\n",i,j,dp[i][j]);
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}