莫比乌斯函数

欧拉函数的性质:

1.  \varphi(x)  :表示 1,2,3,...,x 中与 x gcd(i,x)=1的个数

 

2.  欧拉定理:a^{\varphi (n)}\equiv 1(mod (n)),  可以求逆元  a^{-1}=a^{\varphi(n)-1},一般来说 \large n 都是素数,所以\large a的逆元是a^{-1}=a^{n-2}

 

3.     \sum_{d|n}\varphi(d)=n

 

莫比乌斯函数:

\LARGE F(n)=\sum_{d|n}u(d)*f(n/d)=\sum_{d|n}f(d)

\large u(d)=\begin{cases} 1 & \text{ if } x=1 \\ (-1)^{k}& \text{ else if } x=p_{1}p_{2}...p_{k} \\ 0 & \text{ else } \end{cases}

性质:

\sum_{d=1}^{n}u(d) =\begin{cases} 1 & \text{ if } x=1 \\ 0 & \text{ else } \end{cases}

 

考虑特例:欧拉函数

\large \varphi(n)=\sum_{s\subseteq \left \{ p1,p2,...pk \right \} } (-1)^{\left | s \right |}* \frac{n}{\prod_{pi\in s} pi}

可以看出两者很相近,\large \varphi(n)=\sum_{d|n}u(d)*\frac{n}{d},  我们只需要将 \large f(n)\rightarrow n,即可

 

莫比乌斯反演函数:

第一种形式:

\LARGE f(n)=\sum_{d|n}u(d)F(\frac{n}{d})=\sum_{d|n}F(d)

这里我们还是可以考虑特例:

\large n=\sum_{d|n}u(d)\varphi(\frac{n}{d})=\sum_{d|n}\varphi(d)  在上面欧拉函数的性质中可以验证

 

第二种形式(常用):

\LARGE f(n)=\sum_{n|d}u(\frac{d}{n})*F(d)

 

 

反演中常用的等式:

\large g(m,n)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left [ gcd(i,j)==1 \right ]

                        \large =\sum_{i=1}^{m}\sum_{j=1}^{n} \sum_{d|gcd(i,j)}u(d)           用到反演的一个性质,u(d)之和

                       \large =\sum_{d=1}^{min(n,m)}u(d)*\frac{m}{d}*\frac{n}{d}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值